首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   3篇
  国内免费   4篇
  2023年   1篇
  2022年   1篇
  2020年   1篇
  2019年   2篇
  2017年   1篇
  2016年   2篇
  2014年   3篇
  2013年   2篇
  2012年   3篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2006年   4篇
  2004年   1篇
  2003年   1篇
排序方式: 共有32条查询结果,搜索用时 15 毫秒
1.
Compared to other organisms, such as vascular plants or mosses, lichen‐forming fungi have a high number of species occurring in both northern and southern hemispheres but are largely absent from intermediate, tropical latitudes. For instance, ca. 160 Antarctic species also occur in polar areas or mountainous temperate regions of the northern hemisphere. Early interpretations of this particular distribution pattern were made in terms of vicariance or long‐distance dispersal. However, it was not until the emergence of phylogenetics and the possibility of dating past diversification and colonization events that these initial hypotheses started to be evaluated. The premise of a relatively recent colonization of the southern hemisphere by boreal lichens through long‐distance dispersal has gained support in recent studies based on either the comparison of genetic affinities (i.e., tree topology) or more robust, statistical migratory models. Still, the scarcity of such studies and a concern that taxonomic concepts for bipolar lichens are often too broad preclude the generation of sound explanations on the mechanisms and origin of such fascinating disjunct distributions. This review provides an up‐to‐date overview of bipolar distributions in lichen‐forming fungi and their photobionts. Evidence provided by recent, molecular‐based studies as well as data on the type of lichen reproduction, dispersal ability, photobiont identity and availability, and habitat preferences are brought together to discuss how and when these distributions originated and their genetic footprints. Ideas for future prospects and research are also discussed.  相似文献   
2.
对长白山区兴安白头翁(Pulsatilla dahuricaSprengel)、朝鲜白头翁[P.cernua(Thunb.)Berchtold&Presl]以及其自然杂交种(P.dahurica×P.cernua)进行ITS和psbA-trnH序列分析,结果表明,自然杂交种与兴安白头翁遗传距离为0;ITS电泳显示,在6个信息位点的峰值同时具有朝鲜白头翁和兴安白头翁信息的双重峰,进一步证实前者是朝鲜白头翁和兴安白头翁的自然杂交种.  相似文献   
3.
Most of the species of the family Rubiaceae with flowers arranged in head inflorescences are currently classified in three distantly related tribes, Naucleeae (subfamily Cinchonoideae) and Morindeae and Schradereae (subfamily Rubioideae). Within Morindeae the type genus Morinda is traditionally and currently circumscribed based on its head inflorescences and syncarpous fruits (syncarps). These characters are also present in some members of its allied genera, raising doubts about the monophyly of Morinda. We perform Bayesian phylogenetic analyses using combined nrETS/nrITS/trnT-F data for 67 Morindeae taxa and five outgroups from the closely related tribes Mitchelleae and Gaertnereae to rigorously test the monophyly of Morinda as currently delimited and assess the phylogenetic value of head inflorescences and syncarps in Morinda and Morindeae and to evaluate generic relationships and limits in Morindeae. Our analyses demonstrate that head inflorescences and syncarps in Morinda and Morindeae are evolutionarily labile. Morinda is highly paraphyletic, unless the genera Coelospermum, Gynochthodes, Pogonolobus, and Sarcopygme are also included. Morindeae comprises four well-supported and morphologically distinct major lineages: Appunia clade, Morinda clade (including Sarcopygme and the lectotype M. royoc), Coelospermum clade (containing Pogonolobus and Morinda reticulata), and Gynochthodes–Morinda clade. Four possible alternatives for revising generic boundaries are presented to establish monophyletic units. We favor the recognition of the four major lineages of Morindeae as separate genera, because this classification reflects the occurrence of a considerable morphological diversity in the tribe and the phylogenetic and taxonomic distinctness of its newly delimited genera.  相似文献   
4.
Aim The cosmopolitan genus Herbertus is notorious for having a difficult taxonomy and for the fact that there is limited knowledge of species ranges and relationships. Topologies generated from variable molecular markers are used to discuss biogeographical patterns in Herbertus and to compare them with the geological history of continents and outcomes reported for other land plants. Location Africa, Asia, Azores, Europe, southern South America, northern South America, North America, New Zealand. Methods Phylogenetic analyses of nuclear ribosomal internal transcribed spacer and chloroplast (cp) trnL–trnF sequences of 66 accessions of Herbertus and the outgroup species Triandrophyllum subtrifidum and Mastigophora diclados were used to investigate biogeographical patterns in Herbertus. Areas of putative endemism were defined based on the distribution of species included in the analyses. Maximum parsimony analyses were undertaken to reconstruct ancestral areas and intraspecies migration routes. Results The analyses reveal species‐level cladograms with a correlation between genetic variation and the geographical distribution of the related accessions. The southern South American Herbertus runcinatus is sister to the remainder of the genus, which is split into two main clades. One contains the Neotropical–African Herbertus juniperoideus and the New Zealand/Tasmanian Herbertus oldfieldianus. An African accession of H. juniperoideus is nested within Neotropical accessions. The second main clade includes species that inhabit Asia, the Holarctic, Africa, and northern South America. Maximum parsimony analyses indicate that this clade arose in Asia. Herbertus sendtneri originated in Asia and subsequently colonized the Holarctic and northern South America. An Asian origin and colonization into Africa is indicated for H. dicranus. Main conclusions The current distribution of Herbertus cannot be explained by Gondwanan vicariance. A more feasible explanation of the range is a combination of short‐distance dispersal, rare long‐distance dispersal events (especially into regions that faced floral displacements as a result of climatic changes) extinction, recolonization, and diversification. The African Herbertus flora is a mixture of Asian and Neotropical elements. Southern South America harbours an isolated species. The molecular data indicate partial decoupling of molecular and morphological variation in Herbertus. Biogeographical patterns in Herbertus are not dissimilar to those of other groups of bryophytes, but elucidation of the geographical ranges requires a molecular approach. Some patterns could be the result of maintenance of Herbertus in the inner Tropics during glacial maxima, and dispersal into temperate regions in warm phases.  相似文献   
5.
Sequences of the ITS1–5.8S–ITS2 region of nuclear ribosomal DNA were generated for 12 species from 9 genera of Lejeuneaceae and a single species of Jubulaceae (outgroup). The taxon sampling of Lejeuneaceae included representatives of the two widely recognized subfamilies, Lejeuneoideae and Ptychanthoideae. The molecular dataset was analysed independently and in combination with a morphological dataset. The nrITS dataset and the combined dataset resulted in identical topologies. The genus Bryopteris, sometimes treated as a separate family Bryopteridaceae, is nested within the Lejeuneaceae subfamily Ptychanthoideae. Lejeuneaceae subfamily Lejeuneoideae proved to be paraphyletic with the tribe Lejeuneeae sister to Ptychanthoideae, albeit without significant bootstrap support. The tribes Brachiolejeuneeae and Cheilolejeuneeae of Lejeuneoideae, established recently based on morphological evidence, are well supported in bootstrap analyses both of the ITS and the combined molecular–morphological datasets. The results support classifications of Lejeuneaceae based on morphological data and demonstrate the usefulness of the ITS region for phylogenetic studies within or among closely related genera of Lejeuneaceae.  相似文献   
6.
九子母属Dobinea Buch-Ham.ex D.Don是一个东亚特有属,包含贡山九子母D.vulgaris Buch-Ham.ex D.Don和羊角天麻D.delavayi(Baill.)Baill.两种,主要分布于中国两南地区.有关九子母属的系统位置长期存在争议,小同的学者曾将其归入漆树科Anacardiaceae、无忠子科sapindaceae和九子母科Podoaceae.本文基于rbcL和ITs探讨了其系统位置,结果表明,九子母属的两个种自成单系,并且是漆树科的成员.  相似文献   
7.
8.
9.
Penalized likelihood analysis of previously published chloroplast DNA (cpDNA) ndhF sequences suggests that the central-southern Andean genus Chaetanthera diverged ca. 16.5 million years (my) ago, well before the uplift of the Andes to their present heights. Penalized likelihood analysis based on new nuclear ribosomal DNA (rDNA) internal transcribed spacer (ITS) sequences indicates that the most relictual lineages occupy high elevation Andean habitats that did not exist until some 10my later. This result is contrary to the expectation that younger habitats should be occupied by phylogenetically younger lineages. The results are interpreted with respect to the development of aridity in lowland habitats during the Miocene and Pliocene, which presumably extinguished the lowland relatives of the high elevation taxa or, in effect, forced them upwards in search of adequate moisture. As the more northerly lineages were being displaced upward, others diversified in the mediterranean-type climate area of central Chile, giving rise to additional high elevation taxa again, at an early date, as well as lowland taxa. Some species of Chaetanthera from lowland central Chile appear as the phylogenetically youngest taxa, suggesting secondary adaptation to lowland aridity. At the same time, at least two high elevation species, Chaetanthera peruviana and Chaetanthera perpusilla, appear to have been derived recently from a lower elevation ancestor, while some middle to low elevation taxa seem to have evolved recently out of a high elevation complex. The results suggest that the younger high elevation habitats have served as both "cradle" and "museum" for Chaetanthera lineages.  相似文献   
10.
The genus Pinguicula (Lentibulariaceae) is unusual within the dicot order Lamiales because of the occurrence of both embryos with two cotyledons and those with just one cotyledon. In order to elucidate the infrageneric relationships and the evolutionary history of the embryo, we analysed (1) the internal transcribed spacers ITS1 and ITS2 of the nuclear ribosomal DNA (nrITS) of 29 Old and New World taxa of Pinguicula, and (2) the morphological and anatomical characters of the seeds. We suggest that the cotyledon number and spermoderm structure were quite unstable in the evolution of Pinguicula. Although basal nodes of the nrITS tree are sensitive to taxon sampling, all tree topologies found in this study imply homoplasy in the cotyledon number.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号