首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6990篇
  免费   635篇
  国内免费   474篇
  2023年   144篇
  2022年   111篇
  2021年   164篇
  2020年   237篇
  2019年   278篇
  2018年   188篇
  2017年   244篇
  2016年   206篇
  2015年   231篇
  2014年   263篇
  2013年   386篇
  2012年   232篇
  2011年   279篇
  2010年   239篇
  2009年   341篇
  2008年   383篇
  2007年   389篇
  2006年   410篇
  2005年   351篇
  2004年   345篇
  2003年   305篇
  2002年   241篇
  2001年   234篇
  2000年   213篇
  1999年   181篇
  1998年   140篇
  1997年   157篇
  1996年   152篇
  1995年   104篇
  1994年   142篇
  1993年   108篇
  1992年   103篇
  1991年   90篇
  1990年   73篇
  1989年   59篇
  1988年   51篇
  1987年   45篇
  1986年   42篇
  1985年   39篇
  1984年   40篇
  1983年   29篇
  1982年   21篇
  1981年   21篇
  1980年   14篇
  1979年   21篇
  1978年   17篇
  1977年   6篇
  1976年   8篇
  1975年   9篇
  1973年   4篇
排序方式: 共有8099条查询结果,搜索用时 15 毫秒
1.
Water pollution from industrial Metro Łódź (ML), Poland, made the Ner River almost fishless in its middle-lower course for most of the 19th and 20th century. The new sewage treatment plant of ML and reduction of industry have caused pollution abatement there since the 1990s. As a result, the Ner became repopulated, which was shown by fish samples collected along its course in 2000–2012. Multivariate statistical methods helped distinguish unpolluted (I and II, in the upper course), and recovered (III, IV and V, in the middle-lower course) sections of the river. Historical and present data indicated that section III (downstream of ML) recovered least, both before and during the study. Section V (outflow one) recovered most and its fish fauna (almost exclusively native) now displays high and stable biomass, abundance and species richness, including those of obligatory riverine species. Non-native Prussian carp's dominance followed the river degradation gradient, i.e. was highest in section III, and in section V declined to almost absence. This study shows that the revival of native fish fauna seems to be a method of restricting the dominance of this highly tolerant species. Despite the abatement, storm events are very harmful to fish (mostly in section III), because the Ner discharge may then increase manifold and all storm water is drained by the ML combined sewer system to the Ner in several hours. Other stressors are numerous dams and desorption of pollutants from sediment in the middle Ner, and perhaps pollutant inflow from agriculture or local urban areas. Some moderation of storm impact on water entering the Ner from ML by constructing buffer reservoirs would probably cause further fish recovery in section III.  相似文献   
2.
There is a growing interest in understanding the influence of plant traits on their ability to spread in non-native regions. Many studies addressing this issue have been based on relatively small areas or restricted taxonomic groups. Here, we analyse a large data base involving 1567 plant species introduced between Eastern Asia and North America or from elsewhere to both regions. We related the extent of species distributions in each region to growth form and the distinction between upland and wetland habitats. We identified significant relationships between geographical distribution and plant traits in both native and exotic ranges as well as regional differences in the relationships. Range size was larger for herbaceous graminoids and forbs, especially annuals compared to perennials, than for woody species, and range size also was larger for plants of wetland compared to upland habitats. Distributions were more extensive in North America than in Eastern Asia, although native plants from both regions had broader distributions than non-natives, with exotics from elsewhere intermediate. Growth form and environment explained more of the variance in distribution of plants in North America than in Eastern Asia. The influence of growth form and habitat on distribution suggests that these traits might be related to tolerance of ecological conditions. In addition, the smaller extents of species in non-native compared to native areas suggest roles for dispersal limitation and adaptation to region-specific ecological conditions in determining distribution.  相似文献   
3.
Aim Species richness of insect herbivores feeding on exotic plants increases with abundance as well as range size of the host in the area of introduction. The formation of these herbivore assemblages requires a certain amount of time, and the richness of insect faunas should also increase with the length of time an exotic plant has been present in the introduced range. Location Central Europe. Methods We analysed the variation in species richness of leaf‐chewing Lepidoptera larvae and sap‐sucking Auchenorrhyncha (Hemiptera) associated with 103 exotic woody plant species in Germany in relation to time since introduction, range size, growth form (trees versus shrubs), biogeographical origin (distance from Central Europe) and taxonomic isolation of the host plant (presence or absence of a native congener in the introduced area). Results Using simple correlation analyses we found for Lepidoptera and Auchenorrhyncha that species richness increased with time since introduction of the host plant. For the Lepidoptera the increase of species richness with time since introduction remained significant even after removing the effects of all other independent variables. Main conclusions Our results provide some evidence that assemblages of insects on exotic plants do not reach saturation within a time scale of few hundred years. This contrasts with previous findings for crop plants.  相似文献   
4.
Genetically modified plants are widely grown predominantly in North America and to a lesser extent in Australia, Argentina and China but their regions of production are expected to spread soon beyond these limited areas also reaching Europe where great controversy over the application of gene technology in agriculture persists. Currently, several cultivars of eight major crop plants are commercially available including canola, corn, cotton, potato, soybean, sugar beet, tobacco and tomato, but many more plants with new and combined multiple traits are close to registration. While currently agronomic traits (herbicide resistance, insect resistance) dominate, traits conferring “quality” traits (altered oil compositions, protein and starch contents) will begin to dominate within the next years. However, economically the most promising future lies in the development and marketing of crop plants expressing pharmaceutical or “nutraceuticals” (functional foods), and plants that express a number of different genes. From this it is clear that future agricultural and, ultimately, also natural ecosystems will be challenged by the large-scale introduction of entirely novel genes and gene products in new combinations at high frequencies all of which will have unknown impacts on their associated complex of non-target organisms, i.e. all organisms that are not targeted by the insecticidal protein. In times of severe global decline of biodiversity, pro-active precaution is necessary and careful consideration of the likely expected effects of transgenic plants on biodiversity of plants and insects is mandatory.In this paper possible implications of non-target effects for insect and plant biodiversity are discussed and a case example of such non-target effects is presented. In a multiple year research project, tritrophic and bitrophic effects of transgenic corn, expressing the gene from Bacillus thuringiensis (Bt-corn) that codes for the high expression of an insecticidal toxin (Cry1Ab), on the natural enemy species, Chrysoperla carnea (the green lacewing), was investigated. In these laboratory trials, we found prey-mediated effects of transgenic Bt-corn causing significantly higher mortality of C. carnea larvae. In further laboratory trials, we confirmed that the route of exposure (fed directly or via a herbivorous prey) and the origin of the Bt (from transgenic plants or incorporated into artificial diet) strongly influenced the degree of mortality. In choice feeding trials where C. carnea could choose between Spodoptera littoralis fed transgenic Bt-corn and S. littoralis fed non-transgenic corn, larger instars showed a significant preference for S. littoralis fed non-transgenic corn while this was not the case when the choice was between Bt- and isogenic corn fed aphids. Field implications of these findings could be multifold but will be difficult to assess because they interfere in very intricate ways with complex ecosystem processes that we still know only very little about. The future challenge in pest management will be to explore how transgenic plants can be incorporated as safe and effective components of IPM systems and what gene technology can contribute to the needs of a modern sustainable agriculture that avoids or reduces adverse impacts on biodiversity? For mainly economically motivated resistance management purposes, constitutive high expression of Bt-toxins in transgenic plants is promoted seeking to kill almost 100% of all susceptible (and if possible heterozygote resistant) target pest insects. However, for pest management this is usually not necessary. Control at or below an established economic injury level is sufficient for most pests and cropping systems. It is proposed that partially or moderately resistant plants expressing quantitative rather than single gene traits and affecting the target pest sub-lethally may provide a more meaningful contribution of agricultural biotechnology to modern sustainable agriculture. Some examples of such plants produced through conventional breeding are presented. Non-target effects may be less severe allowing for better incorporation of these plants into IPM or biological control programs using multiple control strategies, thereby, also reducing selection pressure for pest resistance development.  相似文献   
5.
6.
南昌市不同植物类群叶片氮磷浓度及其化学计量比   总被引:11,自引:2,他引:9  
对南昌大学前湖校区89种主要植物叶片的N、P浓度及其化学计量比进行了研究,结果表明:乔灌、常绿、针叶、种子、裸子和单子叶植物类群的N浓度分别低于相对应的草本、落叶、阔叶、蕨类、被子和双子叶植物类群,而C3和C4植物差异不显著;乔灌、常绿和裸子植物类群的P浓度含量分别低于相对应的草本、落叶和被子植物类群,而针叶和阔叶、蕨类和种子、单子叶和双子叶、C3和C4植物类群间差异不显著;乔木、阔叶、被子和双子叶植物类群叶片N/P分别高于相对应的灌草、针叶、裸子和单子叶植物类群,而常绿和落叶、蕨类和种子、C3和C4植物类群之间差异不显著.可见,不同类型植物对N和P的吸收利用存在差异,且对不同养分供应采取不同的适应对策.结合研究区土壤养分现状,建议优先选择常绿、针叶、裸子和单子叶植物类群作为城市园林植物.  相似文献   
7.
Artemisia judaica L. (Compositae) are shrubby herbs growing wildly in Tabuk region and distributed in the desert regions. This region is characterized by extremely variable environmental conditions where the temperature varies from extreme low to extreme high. These temperature regimes have a profound effect on morphology, growth physiology and biochemistry of the plants. The plant samples were collected from Tabuk–Jordan road (760 m above sea level) in the month of January, April, July and October 2013 to evaluate the effect of temperature dynamics on A. judaica L. in four different seasons. Physiological, biochemical alterations and heat shock proteins (HSPs) were studied during these seasons in order to evaluate the environmental adaptation and stress tolerance in response to temperature variations. Plant growth parameters showed a significant increase in height, fresh and dry matter accumulation, total chlorophyll, nitrogen, phosphorus, potassium, artemisinin and leaf relative water contents investigated in the month of April and October. Growth of plant was suppressed and an active role of carbonic anhydrase (CA), catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) was observed to cope with the extreme low temperature in January and extreme high temperature in July 2013. However, the plants collected in October and April did not show a statistical difference. Inductions in the expression of HSP90 were recorded in all the plants collected during April and October 2013 with no statistically significant difference. Therefore, based on the results it is recommended that during April and October the environmental conditions are best suitable for growth, development and medicinal use of Artemisia.  相似文献   
8.
Transgenic plants and biogeochemical cycles   总被引:13,自引:0,他引:13  
  相似文献   
9.
Herbivory is a fundamental process that controls primary producer abundance and regulates energy and nutrient flows to higher trophic levels. Despite the recent proliferation of small‐scale studies on herbivore effects on aquatic plants, there remains limited understanding of the factors that control consumer regulation of vascular plants in aquatic ecosystems. Our current knowledge of the regulation of primary producers has hindered efforts to understand the structure and functioning of aquatic ecosystems, and to manage such ecosystems effectively. We conducted a global meta‐analysis of the outcomes of plant–herbivore interactions using a data set comprised of 326 values from 163 studies, in order to test two mechanistic hypotheses: first, that greater negative changes in plant abundance would be associated with higher herbivore biomass densities; second, that the magnitude of changes in plant abundance would vary with herbivore taxonomic identity. We found evidence that plant abundance declined with increased herbivore density, with plants eliminated at high densities. Significant between‐taxa differences in impact were detected, with insects associated with smaller reductions in plant abundance than all other taxa. Similarly, birds caused smaller reductions in plant abundance than echinoderms, fish, or molluscs. Furthermore, larger reductions in plant abundance were detected for fish relative to crustaceans. We found a positive relationship between herbivore species richness and change in plant abundance, with the strongest reductions in plant abundance reported for low herbivore species richness, suggesting that greater herbivore diversity may protect against large reductions in plant abundance. Finally, we found that herbivore–plant nativeness was a key factor affecting the magnitude of herbivore impacts on plant abundance across a wide range of species assemblages. Assemblages comprised of invasive herbivores and native plant assemblages were associated with greater reductions in plant abundance compared with invasive herbivores and invasive plants, native herbivores and invasive plants, native herbivores and mixed‐nativeness plants, and native herbivores and native plants. By contrast, assemblages comprised of native herbivores and invasive plants were associated with lower reductions in plant abundance compared with both mixed‐nativeness herbivores and native plants, and native herbivores and native plants. However, the effects of herbivore–plant nativeness on changes in plant abundance were reduced at high herbivore densities. Our mean reductions in aquatic plant abundance are greater than those reported in the literature for terrestrial plants, but lower than aquatic algae. Our findings highlight the need for a substantial shift in how biologists incorporate plant–herbivore interactions into theories of aquatic ecosystem structure and functioning. Currently, the failure to incorporate top‐down effects continues to hinder our capacity to understand and manage the ecological dynamics of habitats that contain aquatic plants.  相似文献   
10.
Spartina alterniflora Lois. is a dominant species growing in intermediate and saline marshes of the US Gulf coast and Atlantic coastal marshes. S. alterniflora plants were subjected to a range of soil redox potential (Eh) conditions representing a well aerated to reduced conditions in a rhizotron system under controlled environmental conditions. The low soil Eh resulted in inhibition of root elongation shortly after treatment initiation. Root elongation was reduced as soil Eh approached values below ca. +350 mV. Substantial decrease in root elongation was noted when soil Eh fell below +200 mV. Generally, net photosynthetic rate (PN) decreased as soil Eh was reduced, with substantial reductions in PN found when Eh approached negative values. Average PN was reduced to 87, 64, and 44% of control under +340, +245, and -180 mV treatments, respectively. The reductions in root elongation and PN in response to low soil Eh indicated the adverse effects of low soil Eh on plant functioning and the need for periods of soil aeration that allow plants to resume normal functioning. Thus periods of drainage allowing soil aeration during the growing season appear to be critical to S. alterniflora by providing favorable conditions for root growth and gas exchange with important implications for plant carbon fixation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号