首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   811篇
  免费   61篇
  国内免费   14篇
  2023年   15篇
  2022年   13篇
  2021年   37篇
  2020年   37篇
  2019年   42篇
  2018年   44篇
  2017年   37篇
  2016年   31篇
  2015年   37篇
  2014年   56篇
  2013年   90篇
  2012年   21篇
  2011年   32篇
  2010年   29篇
  2009年   30篇
  2008年   38篇
  2007年   35篇
  2006年   24篇
  2005年   20篇
  2004年   17篇
  2003年   22篇
  2002年   19篇
  2001年   15篇
  2000年   16篇
  1999年   10篇
  1998年   7篇
  1997年   11篇
  1996年   2篇
  1995年   9篇
  1994年   4篇
  1993年   10篇
  1992年   6篇
  1991年   7篇
  1990年   6篇
  1989年   11篇
  1988年   4篇
  1987年   5篇
  1986年   1篇
  1985年   4篇
  1984年   9篇
  1983年   4篇
  1982年   5篇
  1981年   4篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有886条查询结果,搜索用时 15 毫秒
1.
2.
Unilateral cerebral palsy (uCP) causes upper limb movement disorders that impact on daily activities, especially in bimanual condition. However, a few studies have proposed bimanual tasks for 3D motion analysis. The aim of this study was to validate the new version of a child-friendly, 3D, bimanual protocol for the measurement of joint angles and movement quality variables. Twenty children with uCP and 20 typically developing children (TDC) performed the five-task protocol integrated into a game scenario. Each task specifically targeted one or two upper limb degrees of freedom. Joint angles, smoothness and trajectory straightness were calculated. Elbow extension, supination, wrist extension and adduction amplitudes were reduced; hand trajectories were less smooth and straight in children with uCP compared to TDC. Correlations between the performance-based score and kinematic variables were strong. High within and between-session reliability was found for most joint angle variables and lower reliability was found for smoothness and straightness in most tasks. The results therefore demonstrated the validity and reliability of the new protocol for the objective assessment of bimanual function in children with uCP. The evaluation of both joint angles and movement quality variables should increase understanding of pathological movement patterns and help clinicians to optimize treatment.ClinicalTrials.gov identifier: NCT03888443.  相似文献   
3.
A novel method for assessing the accuracy of inertial/magnetic sensors is presented. The method, referred to as the “residual matrix” method, is advantageous because it decouples the sensor's error with respect to Earth's gravity vector (attitude residual error: pitch and roll) from the sensor's error with respect to magnetic north (heading residual error), while remaining insensitive to singularity problems when the second Euler rotation is close to ±90°. As a demonstration, the accuracy of an inertial/magnetic sensor mounted to a participant's forearm was evaluated during a reaching task in a laboratory. Sensor orientation was measured internally (by the inertial/magnetic sensor) and externally using an optoelectronic measurement system with a marker cluster rigidly attached to the sensor's enclosure. Roll, pitch and heading residuals were calculated using the proposed novel method, as well as using a common orientation assessment method where the residuals are defined as the difference between the Euler angles measured by the inertial sensor and those measured by the optoelectronic system. Using the proposed residual matrix method, the roll and pitch residuals remained less than 1° and, as expected, no statistically significant difference between these two measures of attitude accuracy was found; the heading residuals were significantly larger than the attitude residuals but remained below 2°. Using the direct Euler angle comparison method, the residuals were in general larger due to singularity issues, and the expected significant difference between inertial/magnetic sensor attitude and heading accuracy was not present.  相似文献   
4.
5.
The photon flux autocorrelation function of a fluorescent label attached to a bacterial motor shaft is calculated for the case in which the bacterial motor is considered to be actively but idly rotating. It is shown that even when the fluorescent label has a very short lifetime, fluorescence correlation spectroscopy should provide a useful tool for determining the rate of revolution of the bacterial motor under various solution conditions.  相似文献   
6.
The interactions of model proteins with porous matrices in biosensors are considered. The viscoelastic properties of casein and albumin were assessed by a dynamic method of a piezoquartz resonator by applying thin layers of the studied solutions to a piezocrystal. The experimental data on the viscoelastic characteristics of protein solutions of various concentrations were compared with the characteristics of their tangential motion in the porous carriers of cellulose nitrate. It was demonstrated that the parameters of dynamic viscosity correlated with the motion time of the protein solutions in the porous polymeric carrier.  相似文献   
7.
8.
9.
Primates need to detect and recognize camouflaged animals in natural environments. Camouflage-breaking movements are often the only visual cue available to accomplish this. Specifically, sudden movements are often detected before full recognition of the camouflaged animal is made, suggesting that initial processing of motion precedes the recognition of motion-defined contours or shapes. What are the neuronal mechanisms underlying this initial processing of camouflaged motion in the primate visual brain? We investigated this question using intrinsic-signal optical imaging of macaque V1, V2 and V4, along with computer simulations of the neural population responses. We found that camouflaged motion at low speed was processed as a direction signal by both direction- and orientation-selective neurons, whereas at high-speed camouflaged motion was encoded as a motion-streak signal primarily by orientation-selective neurons. No population responses were found to be invariant to the camouflage contours. These results suggest that the initial processing of camouflaged motion at low and high speeds is encoded as direction and motion-streak signals in primate early visual cortices. These processes are consistent with a spatio-temporal filter mechanism that provides for fast processing of motion signals, prior to full recognition of camouflage-breaking animals.  相似文献   
10.
Gait speed is an essential parameter of gait analysis. Our study proposed a simple and accurate method to extract a mean gait speed during walking on a treadmill using only kinematic data from markers placed on the heels of the participants’ feet. This method provided an attractive, simple method that remains resistant to errors in treadmill calibration. In addition, this method required only two markers, since heel markers are essential to gait analysis, and the proposed method is robust enough to differentiate among various gait speeds (mean error <1%).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号