首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   781篇
  免费   124篇
  国内免费   494篇
  2023年   24篇
  2022年   18篇
  2021年   41篇
  2020年   41篇
  2019年   73篇
  2018年   49篇
  2017年   62篇
  2016年   57篇
  2015年   43篇
  2014年   53篇
  2013年   61篇
  2012年   46篇
  2011年   50篇
  2010年   45篇
  2009年   69篇
  2008年   72篇
  2007年   61篇
  2006年   65篇
  2005年   55篇
  2004年   39篇
  2003年   56篇
  2002年   35篇
  2001年   41篇
  2000年   28篇
  1999年   23篇
  1998年   16篇
  1997年   15篇
  1996年   15篇
  1995年   13篇
  1994年   12篇
  1993年   7篇
  1992年   16篇
  1991年   7篇
  1990年   18篇
  1989年   7篇
  1988年   8篇
  1987年   7篇
  1986年   11篇
  1985年   5篇
  1984年   8篇
  1983年   2篇
  1982年   3篇
  1981年   4篇
  1980年   2篇
  1979年   7篇
  1978年   3篇
  1976年   1篇
  1974年   1篇
  1973年   3篇
  1970年   1篇
排序方式: 共有1399条查询结果,搜索用时 31 毫秒
1.
The objective of this study was to determine the moisture content at which the segmental mobility of polymers within a starch granule is restricted. Common corn, waxy corn and high amylose corn starch samples were equilibrated to a final water activity of 0.15, 0.33, 0.75 or 0.97. The samples were then exposed to iodine vapor for 24 h and the color, absorption spectra and X-ray diffraction patterns were measured. Stained and unstained granules were also viewed under a bright field and polarized light microscope. The results demonstrate that successive local transitions occur within a granule with increasing moisture contents. Furthermore, the data shows that at moisture contents of about 13%, iodine is able to penetrate the granule and the resulting complex disrupts the crystalline arrangement within the granules. The differences in extent of mobility of polymers between different starch types can potentially illuminate differences in starch structure and architecture.  相似文献   
2.
3.
Contrary to our expectations, soil salinity and moisture explained little of the spatial variation in plant establishment in the upper intertidal marsh of three southern California wetlands, but did explain the timing of germination. Seedlings of 27 species were identified in 1996 and 1997. The seedlings were abundant (maximum densities of 2143/m2 in 1996 and 1819/m2 in 1997) and predominantly annual species. CCAs quantified the spatial variation in seedling density that could be explained by three groups of predictor variables: (1) perennial plant cover, elevation and soil texture (16% of variation), (2) wetland identity (14% of variation) and (3) surface soil salinity and moisture (2% of variation). Increasing the spatial scale of analysis changed the variables that best predicted patterns of species densities. Timing of germination depended on surface soil salinity and, to a lesser extent, soil moisture. Germination occurred after salinity had dropped below a threshold or, in some cases, after moisture had increased above a critical level. Between 32% and 92% of the seedlings were exotic and most of these occurred at lower soil salinity than native species. However, Parapholis incurva and Mesembryanthemum nodiflorum were found in the same environments as the native species. In 1997, the year of a strong El Niño/Southern Oscillation event with high rainfall and sea levels, the elevation distribution of species narrowed and densities of P. incurva and other exotic species decreased but densities of native and rare species did not change. The ‘regeneration niche’ of wetland plant communities includes the effects of multiple abiotic and biotic factors on both the spatial and temporal variations in plant establishment.  相似文献   
4.
Enumeration of denitrifying microbial populations in turf   总被引:2,自引:0,他引:2  
Summary Denitrifer populations of a silt and silt loam soil under a Kentucky bluegrass turf were enumerated using the most probable number (MPN) procedure. The influence of soil texture, soil depth, soil moisture, and additions of nitrate fertilizer on denitrifier populations were determined. Saturated soil conditions increased denitrifier populations 87-fold in the silt soil and 121-fold in the silt loam soil. Denitrifier populations did not differ significantly between soil depths and additions of fertilizer nitrate did not influence populations.  相似文献   
5.
  • Information on the optimal conditions to promote the germination of Lamprocapnos spectabilis (L.) Fukuhara seeds is limited; consequently, this study was conducted to establish the requirements to break seed dormancy and promote germination.
  • The selected seeds had morphophysiological dormancy and had not begun embryo development. To study the dormancy breaking and embryo development processes, seeds were subjected to constant or changing temperature treatments during moist stratification.
  • High temperature and humidity resulted in vigorous embryo growth, with the longest embryos occurring after 1 month of incubation at 20 °C. At 4 °C, the seeds required incubation period of at least 3 months to germinate. Embryo growth and germination were higher with changing high and low temperatures than under a constant temperature, and changing temperatures also considerably changed the endogenous hormone levels, embryo development and germination. Bioactive gibberellin (GA) content was higher in seeds incubated at 20 °C for 1 month, then at 4 °C for 2 months. The content of endogenous abscisic acid in seeds subjected to the same treatment decreased by 97.6% compared with that of the untreated seeds.
  • Embryo growth and seed germination require changing high and low temperatures; however, exogenous GA3 could substitute for high temperatures, as it also causes accelerated germination. In this study, the seeds of L. spectabilis were identified as an intermediate simple type, a sub‐level of morphophysiologically dormant seeds.
  相似文献   
6.
J. K. Bush 《Plant Ecology》2006,183(2):215-225
This study evaluated the relationships among soil moisture, soil salinity, and soil oxygen on the growth of Helianthus paradoxus (Asteraceae), a threatened inland salt marsh species of western North America. The study was conducted in large growth boxes (1×2×0.3 m) tilted at an angle to achieve a saturated to dry water gradient similar to that found in the marsh. This experimental design allowed the evaluation of major abiotic factors (soil moisture and soil salinity) which have been shown to be potentially important for this species, while removing major biotic factors, such as competition from other community dominants. Maximum aboveground biomass occurred in the middle rows of the boxes, where surface soil water was reduced and subsurface soil water was intermediate in the gradient. Regression analyses indicated that H. paradoxus would grow best where surface soil water is approximately 5%, subsurface soil water ranges from 20 to 30%, and where surface soil salinity is less than 0.5 g kg−1. Edaphic variables, particularly soil moisture and soil salinity, affect the growth of H. paradoxus. Data presented here suggest that the survival of this species depends on maintenance of the hydrologic regime.  相似文献   
7.
High altitude wetlands on the Tibetan Plateau have been shrinking due to anthropogenic disturbances and global climate change. However, the few studies that have been conducted on wetlands are inconclusive about the effect of soil moisture on seed banks and potential of seed banks in wetlands with different levels of soil moisture for regeneration of dried wetlands. We investigated seed banks and plant communities along a soil moisture gradient. A structural equation model was used to analyze the direct and indirect effects of soil moisture on seed banks, as well as the relationship between plant communities and seed banks. Although soil moisture had no direct effects on seed bank richness and density and indirect effects on seed banks through plant community, it had indirect effects on the seed bank through soil pH. Soil moisture also did not have direct effects on plant community richness, but it had indirect effects through soil pH. Plant community composition changed with soil moisture, but aboveground plant abundance and seed banks composition did not change. Low similarity exists between plant community and seed banks for all wetlands, and similarity decreased along the moisture gradient. The key factor determining plant community diversity was soil pH, while seed bank diversity was mainly affected by soil pH and plant community diversity with wetland drying. Although potential for regenerating the plant community from the seed bank decreased with an increase in soil moisture, drained wetlands still have enough residual seeds for successful restoration of species-rich alpine meadows.  相似文献   
8.
9.
The influence of moisture on the survival, movement anddegradation activity of a 2,4-D degrading bacterium,Burkholderia cepacia strain BRI6001L, geneticallyengineered to contain bioluminescent and lactoseutilization genes, was studied in unsaturated soil columns.The distance traveled by BRI6001L was dependent on theclay content of the soil, higher clay contents beingresponsible for higher filtration coefficients. Long termsurvival, in excess of one year, was attributed to strainBRI6001L's ability to survive dry conditions. Changes inthe 2,4-D biodegradation rate showed a better correlationwith the BRI6001L population density than with the totalviable bacterial population. At moisture levels betweenfield capacity and 40% moisture (– 33 kPa to –100 kPa)2,4-D degradation was attributed mainly to BRI6001L. Atmoisture levels between 6 and 15%, 2,4-D disappearancewas attributed to the indigenous microbial population,with no degradation occurring at moisture levels below6%. Returning the moisture to above 40% led to anincrease of 4 orders of magnitude in the BRI6001Lpopulation density and to a 10-fold increase in the 2,4-Ddegradation rate. The ability to monitor a specificmicrobial population using reporter genes hasdemonstrated the importance of controlling moisturelevels for maximizing biodegradation rates in unsaturatedsoil environments.  相似文献   
10.
土壤水分时空动态特征对于干旱地区人工林的可持续经营与管理起着至关重要的作用。以位于科尔沁沙地南缘的樟子松和柠条固沙人工林为对象,于2018年11月-2019年11月连续观测了林地0-200 cm土壤剖面的含水量、温度及微气象因子,系统分析了土壤水分的时空变化特征及其对环境因子的响应。研究期内,两种林地土壤水分的季节变化可分为冻结期、补充期、消耗期和稳定期;依据土壤剖面的水分特征可分为易变层、活跃层和稳定层,但两种林地的分层深度有一定差异。在生长季内(5-10月),土壤含水量对大气降雨的响应随着土层深度的增加而减弱;降雨对樟子松人工林0-20 cm层土壤水分的影响极显著(P<0.01),对柠条人工林0-10 cm层的影响极显著(P<0.01)、20-60 cm层显著(P<0.05)。在土壤冻融周期内(2018年11月-2019年4月),两种林地的土壤均表现为"单向冻结"和"双向融化"的特点;土壤温度是影响冻融期内土壤含水量的关键因素,两者呈极显著的指数函数关系;樟子松和柠条人工林土壤的最大冻结深度分别为170 cm和190 cm,前者10 cm土层解冻时间要比后者晚11 d,可能与乔木树冠的遮阴作用有关。潜在蒸散与柠条林0-60 cm层、樟子松林0-20 cm和200 cm层的土壤水分呈极显著相关(P<0.01),而与樟子松林60 cm和160 cm层呈显著相关(P<0.05),这与树木蒸腾和土壤蒸发等综合作用有关。研究表明,由于两种人工林的树种组成、树冠大小、郁闭程度和根系分布等结构特征不同会导致林地土壤水分时空特征的异质性及其对环境因素响应的差异。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号