首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11410篇
  免费   2701篇
  国内免费   3740篇
  2024年   9篇
  2023年   587篇
  2022年   547篇
  2021年   711篇
  2020年   924篇
  2019年   1007篇
  2018年   835篇
  2017年   847篇
  2016年   831篇
  2015年   696篇
  2014年   793篇
  2013年   1002篇
  2012年   728篇
  2011年   769篇
  2010年   594篇
  2009年   641篇
  2008年   627篇
  2007年   752篇
  2006年   657篇
  2005年   535篇
  2004年   423篇
  2003年   407篇
  2002年   352篇
  2001年   348篇
  2000年   278篇
  1999年   234篇
  1998年   208篇
  1997年   176篇
  1996年   168篇
  1995年   170篇
  1994年   138篇
  1993年   118篇
  1992年   117篇
  1991年   121篇
  1990年   77篇
  1989年   69篇
  1988年   41篇
  1987年   39篇
  1986年   27篇
  1985年   39篇
  1984年   44篇
  1983年   22篇
  1982年   57篇
  1981年   17篇
  1980年   15篇
  1979年   15篇
  1978年   8篇
  1977年   10篇
  1976年   7篇
  1958年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
There is a diverse range of microbiological challenges facing the food, healthcare and clinical sectors. The increasing and pervasive resistance to broad‐spectrum antibiotics and health‐related concerns with many biocidal agents drives research for novel and complementary antimicrobial approaches. Biofilms display increased mechanical and antimicrobial stability and are the subject of extensive research. Cold plasmas (CP) have rapidly evolved as a technology for microbial decontamination, wound healing and cancer treatment, owing to the chemical and bio‐active radicals generated known collectively as reactive oxygen and nitrogen species. This review outlines the basics of CP technology and discusses the interactions with a range of microbiological targets. Advances in mechanistic insights are presented and applications to food and clinical issues are discussed. The possibility of tailoring CP to control specific microbiological challenges is apparent. This review focuses on microbiological issues in relation to food‐ and healthcare‐associated human infections, the role of CP in their elimination and the current status of plasma mechanisms of action.  相似文献   
2.
In alpine regions worldwide, climate change is dramatically altering ecosystems and affecting biodiversity in many ways. For streams, receding alpine glaciers and snowfields, paired with altered precipitation regimes, are driving shifts in hydrology, species distributions, basal resources, and threatening the very existence of some habitats and biota. Alpine streams harbour substantial species and genetic diversity due to significant habitat insularity and environmental heterogeneity. Climate change is expected to affect alpine stream biodiversity across many levels of biological resolution from micro‐ to macroscopic organisms and genes to communities. Herein, we describe the current state of alpine stream biology from an organism‐focused perspective. We begin by reviewing seven standard and emerging approaches that combine to form the current state of the discipline. We follow with a call for increased synthesis across existing approaches to improve understanding of how these imperiled ecosystems are responding to rapid environmental change. We then take a forward‐looking viewpoint on how alpine stream biologists can make better use of existing data sets through temporal comparisons, integrate remote sensing and geographic information system (GIS) technologies, and apply genomic tools to refine knowledge of underlying evolutionary processes. We conclude with comments about the future of biodiversity conservation in alpine streams to confront the daunting challenge of mitigating the effects of rapid environmental change in these sentinel ecosystems.  相似文献   
3.
Habitat destruction is driving biodiversity loss in remaining ecosystems, and ecosystem functioning and services often directly depend on biodiversity. Thus, biodiversity loss is likely creating an ecosystem service debt: a gradual loss of biodiversity‐dependent benefits that people obtain from remaining fragments of natural ecosystems. Here, we develop an approach for quantifying ecosystem service debts, and illustrate its use to estimate how one anthropogenic driver, habitat destruction, could indirectly diminish one ecosystem service, carbon storage, by creating an extinction debt. We estimate that c. 2–21 Pg C could be gradually emitted globally in remaining ecosystem fragments because of plant species loss caused by nearby habitat destruction. The wide range for this estimate reflects substantial uncertainties in how many plant species will be lost, how much species loss will impact ecosystem functioning and whether plant species loss will decrease soil carbon. Our exploratory analysis suggests that biodiversity‐dependent ecosystem service debts can be globally substantial, even when locally small, if they occur diffusely across vast areas of remaining ecosystems. There is substantial value in conserving not only the quantity (area), but also the quality (biodiversity) of natural ecosystems for the sustainable provision of ecosystem services.  相似文献   
4.
A better understanding of how ecological novelty influences interactions in new combinations of species is key for predicting interaction outcomes, and can help focus conservation and management efforts on preventing the introduction of novel organisms or species (including invasive species, GMOs, synthetic organisms, resurrected species and emerging pathogens) that seem particularly ‘risky’ for resident species. Here, we consider the implications of different degrees of eco‐evolutionary experience of interacting resident and non‐resident species, define four qualitative risk categories for estimating the probability of successful establishment and impact of novel species and discuss how the effects of novelty change over time. Focusing then on novel predator–prey interactions, we argue that novelty entails density‐dependent advantages for non‐resident species, with their largest effects often being at low prey densities. This is illustrated by a comparison of predator functional responses and prey predation risk curves between novel species and ecologically similar resident species, and raises important issues for the conservation of endangered resident prey species.  相似文献   
5.
The marine‐freshwater boundary is a major biodiversity gradient and few groups have colonised both systems successfully. Fishes have transitioned between habitats repeatedly, diversifying in rivers, lakes and oceans over evolutionary time. However, their history of habitat colonisation and diversification is unclear based on available fossil and phylogenetic data. We estimate ancestral habitats and diversification and transition rates using a large‐scale phylogeny of extant fish taxa and one containing a massive number of extinct species. Extant‐only phylogenetic analyses indicate freshwater ancestry, but inclusion of fossils reveal strong evidence of marine ancestry in lineages now restricted to freshwaters. Diversification and colonisation dynamics vary asymmetrically between habitats, as marine lineages colonise and flourish in rivers more frequently than the reverse. Our study highlights the importance of including fossils in comparative analyses, showing that freshwaters have played a role as refuges for ancient fish lineages, a signal erased by extinction in extant‐only phylogenies.  相似文献   
6.
7.
The lipid composition of microbial communities can indicate their response to changes in the surrounding environment induced by anthropogenic practices, chemical contamination or climatic conditions. A considerable number of analytical techniques exist for the examination of microbial lipids. This article reviews a selection of methods available for environmental samples as applied for lipid extraction, fractionation, derivatization and quantification. The discussion focuses on the origin of the standard methods, the different modified versions developed for investigation of microbial lipids, as well as the advantages and limitations of each. Current modifications to standard methods show a number of improvements for each of the different steps associated with analysis. The advantages and disadvantages of lipid analysis compared to other popular techniques are clarified. Accordingly, the preferential utilization of signature lipid biomarker analysis in current research is considered. It is clear from recent literature that this technique stays relevant – mainly for the variety of microbial properties that can be determined in a single analysis.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号