首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1434篇
  免费   177篇
  国内免费   50篇
  2024年   1篇
  2023年   27篇
  2022年   38篇
  2021年   49篇
  2020年   91篇
  2019年   130篇
  2018年   85篇
  2017年   44篇
  2016年   69篇
  2015年   156篇
  2014年   244篇
  2013年   181篇
  2012年   100篇
  2011年   103篇
  2010年   97篇
  2009年   71篇
  2008年   65篇
  2007年   39篇
  2006年   30篇
  2005年   22篇
  2004年   9篇
  2003年   8篇
  2002年   1篇
  1985年   1篇
排序方式: 共有1661条查询结果,搜索用时 15 毫秒
1.
脓毒症是重症监护病房(ICU)患者死亡的重要原因之一,因其高患病率、高死亡率、高治疗费用的特点,以及缺乏有效的救治策略,使它成为人类健康的巨大威胁。免疫炎症反应失衡与脓毒症的发生发展密切相关,但其关键调控机制尚不清楚。微小RNA(micro RNA,mi RNA)在固有免疫反应和适应性免疫反应中起着重要作用。mi RNA通过调控炎症信号通路中关键分子的表达,从而影响脓毒症相关炎症因子的表达。因此,mi RNA可能成为在基因转录后水平诊断和治疗脓毒症的新靶点。  相似文献   
2.
Myocarditis is an inflammatory disease of the heart, which can persist over a long time. During this time, known as the chronic phase of myocarditis, ongoing inflammation damages the cardiomyocytes. The loss of cardiac cells culminates in the development of dilated cardiomyopathy, often followed by non-ischemic heart failure due to diminished cardiac function. During the course of the disease, expression levels of non-coding small RNAs, called microRNAs (miRNAs), change. Although mainly studied in the acute setting, some of these changes in expression level appear to persist in the chronic phase. In addition to being a much-needed diagnostic tool, these miRNA could provide new treatment options. miRNA-based intervention strategies already showed promising results in the treatment of ischemic cardiovascular diseases in preclinical animal models. By implementing more knowledge on the role of miRNAs in the progression towards heart failure, this can potentially be used in the development of miRNA-based therapeutic interventions in the treatment of myocarditis and thereby preventing the progression towards heart failure. The first part of this review will focus on the natural course of myocarditis and the progression towards heart failure. Secondly, we will discuss the current knowledge on alterations of miRNA expression patterns, and suggest some possible future interventions.  相似文献   
3.
4.
5.
Background: Circulating microRNAs (miRNA) are present in body fluids in stable, cell-free form. Likewise, these miRNAs can be identified in various stages of coronary artery disease (CAD) such as inflammation, endothelial dysfunction, proliferation and atherosclerosis among others. miRNA expression levels can be identified.

Aims and objectives: To determine the expression of circulating miRNAs (miR-126, miR-92, miR-33, miR-145 and miR-155) in CAD patients of Indian origin.

Material and methods: miRNA profiling analysis in blood plasma was performed by quantitative real-time-PCR (qRT-PCR) in 60 angiographically verified subjects including 30 CAD patients and 30 age- and gender-matched controls. Association between the expression of all five circulating miRNAs and clinical characteristics of patients with CAD were analysed using Medcalc statistics. The severity of CAD was assessed using SYNTAX score (SS).

Results: Expression of plasma miR-33 increased by 2.9 folds in CAD patients than in control group (p value ≥0.002) also it was found that miR-33 expression levels in mild cases (SS: ≤22) were significantly higher than CAD controls. There was a modest negative correlation between miR-33 and total cholesterol/high density lipoprotein ratio, triglycerides and very low density lipoprotein.

Conclusion: The study reports a significant association between increased levels of plasma miR-33 and CAD. Thus, plasma miR-33 appears to be a promising non-invasive biomarker, but requires further validation in a large cohort.  相似文献   

6.
7.
Generating functional hepatocyte‐like cells (HLCs) from mesenchymal stem cells (MSCs) is of great urgency for bio‐artificial liver support system (BALSS). Previously, we obtained HLCs from human umbilical cord‐derived MSCs by overexpressing seven microRNAs (HLC‐7) and characterized their liver functions in vitro and in vivo. Here, we aimed to screen out the optimal miRNA candidates for hepatic differentiation. We sequentially removed individual miRNAs from the pool and examined the effect of transfection with remainder using RT‐PCR, periodic acid—Schiff (PAS) staining and low‐density lipoprotein (LDL) uptake assays and by assessing their function in liver injury models. Surprisingly, miR‐30a and miR‐1290 were dispensable for hepatic differentiation. The remaining five miRNAs (miR‐122, miR‐148a, miR‐424, miR‐542‐5p and miR‐1246) are essential for this process, because omitting any one from the five‐miRNA combination prevented hepatic trans‐differentiation. We found that HLCs trans‐differentiated from five microRNAs (HLC‐5) expressed high level of hepatic markers and functioned similar to hepatocytes. Intravenous transplantation of HLC‐5 into nude mice with CCl4‐induced fulminant liver failure and acute liver injury not only improved serum parameters and their liver histology, but also improved survival rate of mice in severe hepatic failure. These data indicated that HLC‐5 functioned similar to HLC‐7 in vitro and in vivo, which have been shown to resemble hepatocytes. Instead of using seven‐miRNA combination, a simplified five‐miRNA combination can be used to obtain functional HLCs in only 7 days. Our study demonstrated an optimized and efficient method for generating functional MSC‐derived HLCs that may serve as an attractive cell alternative for BALSS.  相似文献   
8.
The DNA damage response (DDR) triggers widespread changes in gene expression, mediated partly by alterations in micro(mi) RNA levels, whose nature and significance remain uncertain. Here, we report that miR-34a, which is upregulated during the DDR, modulates the expression of protein phosphatase 1γ (PP1γ) to regulate cellular tolerance to DNA damage. Multiple bio-informatic algorithms predict that miR-34a targets the PP1CCC gene encoding PP1γ protein. Ionising radiation (IR) decreases cellular expression of PP1γ in a dose-dependent manner. An miR-34a-mimic reduces cellular PP1γ protein. Conversely, an miR-34a inhibitor antagonizes IR-induced decreases in PP1γ protein expression. A wild-type (but not mutant) miR-34a seed match sequence from the 3′ untranslated region (UTR) of PP1CCC when transplanted to a luciferase reporter gene makes it responsive to an miR-34a-mimic. Thus, miR-34a upregulation during the DDR targets the 3′ UTR of PP1CCC to decrease PP1γ protein expression. PP1γ is known to antagonize DDR signaling via the ataxia-telangiectasia-mutated (ATM) kinase. Interestingly, we find that cells exposed to DNA damage become more sensitive – in an miR-34a-dependent manner – to a second challenge with damage. Increased sensitivity to the second challenge is marked by enhanced phosphorylation of ATM and p53, increased γH2AX formation, and increased cell death. Increased sensitivity can be partly recapitulated by a miR-34a-mimic, or antagonized by an miR-34a-inhibitor. Thus, our findings suggest a model in which damage-induced miR-34a induction reduces PP1γ expression and enhances ATM signaling to decrease tolerance to repeated genotoxic challenges. This mechanism has implications for tumor suppression and the response of cancers to therapeutic radiation.  相似文献   
9.
The original strategies developed by Helicobacter pylori to persistently colonise its host and to deregulate its cellular functions make this bacterium an outstanding model to study host‐pathogen interaction and the mechanisms responsible for bacterial‐induced carcinogenesis. During the last year, significant results were obtained on the role of bacterial factors essential for gastric colonisation such as spiral shape maintenance, orientation through chemotaxis and the formation of bacteria clonal population islands inside the gastric glands. Particularities of the H pylori cell surface, a structure important for immune escape, were demonstrated. New insights in the bacterial stress response revealed the importance of DNA methylation‐mediated regulation. Further findings were reported on H pylori components that mediate natural transformation and mechanisms of bacterial DNA horizontal transfer which maintain a high level of H pylori genetic variability. Within‐host evolution was found to be niche‐specific and probably associated with physiological differences between the antral and oxyntic gastric mucosa. In addition, with the progress of CryoEM, high‐resolution structures of the major virulence factors, VacA and CagT4SS, were obtained. The use of gastric organoid models fostered research revealing, preferential accumulation of bacteria at the site of injury during infection. Several studies further characterised the role of CagA in the oncogenic properties of H pylori, identifying the activation of novel CagA‐dependent pathways, leading to the promotion of genetic instabilities, epithelial‐to‐mesenchymal transition and finally carcinogenesis. Recent studies also highlight that microRNA‐mediated regulation and epigenetic modifications, through DNA methylation, are key events in the H pylori‐induced tumorigenesis process.  相似文献   
10.
Understanding the regulation of cardiac fibrosis is critical for controlling adverse cardiac remodeling during heart failure. Previously we identified miR-378 as a cardiomyocyte-abundant miRNA down-regulated in several experimental models of cardiac hypertrophy and in patients with heart failure. To understand the consequence of miR-378 down-regulation during cardiac remodeling, our current study employed a locked nucleic acid-modified antimiR to target miR-378 in vivo. Results showed development of cardiomyocyte hypertrophy and fibrosis in mouse hearts. Mechanistically, miR-378 depletion was found to induce TGFβ1 expression in mouse hearts and in cultured cardiomyocytes. Among various secreted cytokines in the conditioned-media of miR-378-depleted cardiomyocytes, only TGFβ1 levels were found to be increased. The increase was prevented by miR-378 expression. Treatment of cardiac fibroblasts with the conditioned media of miR-378-depleted myocytes activated pSMAD2/3 and induced fibrotic gene expression. This effect was counteracted by including a TGFβ1-neutralizing antibody in the conditioned-medium. In cardiomyocytes, adenoviruses expressing dominant negative N-Ras or c-Jun prevented antimiR-mediated induction of TGFβ1 mRNA, documenting the importance of Ras and AP-1 signaling in this response. Our study demonstrates that reduction of miR-378 during pathological conditions contributes to cardiac remodeling by promoting paracrine release of profibrotic cytokine, TGFβ1 from cardiomyocytes. Our data imply that the presence in cardiomyocyte of miR-378 plays a critical role in the protection of neighboring fibroblasts from activation by pro-fibrotic stimuli.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号