首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1031篇
  免费   108篇
  国内免费   25篇
  2023年   24篇
  2022年   24篇
  2021年   44篇
  2020年   52篇
  2019年   66篇
  2018年   59篇
  2017年   49篇
  2016年   36篇
  2015年   44篇
  2014年   68篇
  2013年   133篇
  2012年   38篇
  2011年   39篇
  2010年   29篇
  2009年   52篇
  2008年   42篇
  2007年   32篇
  2006年   34篇
  2005年   23篇
  2004年   27篇
  2003年   30篇
  2002年   27篇
  2001年   20篇
  2000年   14篇
  1999年   25篇
  1998年   13篇
  1997年   16篇
  1996年   11篇
  1995年   7篇
  1994年   6篇
  1993年   6篇
  1992年   8篇
  1991年   13篇
  1990年   12篇
  1989年   6篇
  1988年   5篇
  1987年   1篇
  1986年   6篇
  1985年   5篇
  1984年   4篇
  1982年   3篇
  1981年   5篇
  1979年   1篇
  1978年   1篇
  1976年   2篇
  1975年   1篇
  1972年   1篇
排序方式: 共有1164条查询结果,搜索用时 15 毫秒
1.
机械损伤对拟南芥莲座叶芥子油苷含量和组成的影响   总被引:3,自引:0,他引:3  
植物可以利用体内次生代谢产物的变化来抵御昆虫取食和机械损伤.芥子油苷是拟南芥的主要次生代谢产物.通过剪刀剪取叶片(40%面积)对温室培养的拟南芥幼苗莲座叶进行机械损伤处理,观察机械损伤后8个时间点拟南芥叶片中不同种类芥子油苷含量和组合模式的变化.结果表明机械损伤后3 h叶片中芥子油苷总含量开始明显上升,脂肪族和吲哚族芥子油苷含量在损伤后3 h也都显著高于损伤前.在检测到的12种芥子油苷中,4-甲基亚磺酰丁基芥子油苷(4-methylsulphinylbutyl GS,4MSOB)的含量最多,占芥子油苷总量的48.5%,并且在损伤3 h后含量增加.4MSOB含量的变化成为影响莲座叶中芥子油苷组合模式的主导因素.其它各种芥子油苷在损伤后不同时间点的变化也存在差异.  相似文献   
2.
丛枝菌根真菌对刺槐幼苗机械损伤响应机制的初步研究   总被引:1,自引:0,他引:1  
李朕  胡文涛  唐明 《西北植物学报》2015,35(7):1437-1442
通过对刺槐幼苗每隔3d剪去1片叶片造成持续机械损伤,测定了0~138h抗氧化酶活性变化及刺槐幼苗生长情况;同时使用孔径25μm尼龙网设置三室根箱隔网系统,测定了供体瞬时机械损伤后受体的抗氧化酶活性的持续变化,探讨接种丛枝菌根真菌刺槐幼苗对持续及瞬时机械损伤后的响应机制,以及菌根菌丝桥对刺槐幼苗机械损伤信号的传递特征。结果表明:在持续机械损伤胁迫下,接种丛枝菌根真菌能够促进刺槐幼苗的根系生长、提高幼苗的成活率,接种丛枝菌根真菌的刺槐幼苗成活率及根系鲜重比对照分别增加15.38%和23.52%。瞬时机械损伤后0、48、90、114、138h刺槐幼苗的苯丙氨酸解氨酶(PAL)和过氧化物酶(POD)活性都呈现先增加后降低的趋势,均在90h达到最大值,并且菌根化幼苗的PAL和POD活性显著高于未菌根化幼苗。瞬时机械损伤后,菌根菌丝桥能够介导刺槐幼苗间相关信号的传递,从而引起菌根化受体刺槐幼苗的PAL和POD活性表现出与供体机械损伤幼苗相同的变化趋势。  相似文献   
3.
Spiders can produce up to seven different types of silks or glues with different mechanical properties. Of these, flagelliform (Flag) silk is the most elastic, and aciniform (AcSp1) silk is the toughest. To produce a chimeric spider silk (spidroin) FlagR-AcSp1R, we fused one repetitive module of flagelliform silk from Araneus ventricosus and one repetitive module of aciniform silk from Argiope trifasciata. The recombinant protein expressed in E. coli formed silk-like fibers by manual-drawing. CD analysis showed that the secondary structure of FlagR-AcSp1R spidroin remained stable during the gradual reduction of pH from 7.0 to 5.5. The spectrum of FTIR indicated that the secondary structure of FlagR-AcSp1R changed from α-helix to β-sheet. The conformation change of FlagR-AcSp1R was similar to other spidroins in the fiber formation process. SEM analysis revealed that the mean diameter of the fibers was around 1 ~ 2 μm, and the surface was smooth and uniform. The chimeric fibers exhibited superior toughness (~33.1 MJ/m3) and tensile strength (~261.4 MPa). This study provides new insight into design of chimeric spider silks with high mechanical properties.  相似文献   
4.
Adrenergic receptors (ARs) are receptors of noradrenalin and adrenalin, of which there are nine different subtypes. In particular, β2 adrenergic receptor (β2-AR) is known to be related to the restoration and maintenance of homeostasis in bone and cardiac tissues; however, the functional role of signaling through β2-AR in periodontal ligament (PDL) tissue has not been fully examined. In this report, we investigated that β2-AR expression in PDL tissues and their features in PDL cells. β2-AR expressed in rat PDL tissues and human PDL cells (HPDLCs) derived from two different patients (HPDLCs-2G and -3S). Rat PDL tissue with occlusal loading showed high β2-AR expression, while its expression was downregulated in that without loading. In HPDLCs, β2-AR expression was increased exposed to stretch loading. The gene expression of PDL-related molecules was investigated in PDL clone cells (2-23 cells) overexpressing β2-AR. Their gene expression and intracellular cyclic adenosine monophosphate (cAMP) levels were also investigated in HPDLCs treated with a specific β2-AR agonist, fenoterol (FEN). Overexpression of β2-AR significantly promoted the gene expression of PDL-related molecules in 2 to 23 cells. FEN led to an upregulation in the expression of PDL-related molecules and increased intracellular cAMP levels in HPDLCs. In both HPDLCs, inhibition of cAMP signaling by using protein kinase A inhibitor suppressed the FEN-induced gene expression of α-smooth muscle actin. Our findings suggest that the occlusal force is important for β2-AR expression in PDL tissue and β2-AR is involved in fibroblastic differentiation and collagen synthesis of PDL cells. The signaling through β2-AR might be important for restoration and homeostasis of PDL tissue.  相似文献   
5.
Beloussov LV 《Bio Systems》2012,109(3):262-279
We start from reviewing different epistemological constructions used for explaining morphogenesis. Among them, we explore the explanatory power of a law-centered approach which includes top-down causation and the basic concepts of a self-organization theory. Within such a framework, we discuss the morphomechanical models based upon the presumption of feedbacks between mechanical stresses imposed onto a given embryo part from outside and those generated within the latter as a kind of active response. A number of elementary morphogenetic events demonstrating that these feedbacks are directed towards hyper-restoration (restoration with an overshoot) of the initial state of mechanical stresses are described. Moreover, we show that these reactions are bound together into the larger scale feedbacks. That permits to suggest a reconstruction of morphogenetic successions in early Metazoan development concentrated around two main archetypes distinguished by the blastopores geometry. The perspectives of applying the same approach to cell differentiation are outlined. By discussing the problem of positional information we suggest that the developmental pathway of a given embryo part depends upon its preceded deformations and the corresponding mechanical stresses rather than upon its static position at any moment of development.  相似文献   
6.
Factors involved in capillary growth in the heart   总被引:6,自引:0,他引:6  
Growth of capillaries in the heart occurs under physiological circumstances during endurance exercise training, exposure to high altitude and/or cold, and changes in cardiac metabolism or heart rate elicited by modification of thyroid hormone levels. Capillary growth in all these conditions can be linked with increased coronary blood flow, decreased heart rate, or both. This paper brings evidence that, although increased blood flow due to long-term administration of coronary vasodilators results in capillary growth, a long-term decrease in heart rate induced by electrical bradycardial pacing in rabbits and pigs, or by chronic administration of a bradycardic drug, alinidine, in rats, stimulates capillary growth with little or no change in coronary blood flow. Decreased heart rate results in increased capillary wall tension, increased end-diastolic volume and increased force of contraction, and thus stretch of the capillary wall. This could lead to release of various growth factors possibly stored in the capillary basement membrane. Correlation was found between capillary density (CD) and the levels of low molecular endothelial cell stimulating angiogenic factor (ESAF) both in rabbit and pig hearts with CD increased by pacing. There was no relation between expression of mRNA for basic fibroblast growth factor and CD in sham-operated and paced rabbit hearts. In contrast, mRNA for TGFß was increased in paced hearts, and the possible role of this factor in the regulation of capillary growth induced by bradycardia is discussed.  相似文献   
7.
For studying cardiac mechanics, hyperelastic anisotropic computational models have been developed which require the tissue anisotropic and hyperelastic parameters. These parameters are obtained by tissue samples mechanically testing. The validity of such parameters are limited to the specific tissue sample only. They are not adaptable for pathological tissues commonly associated with tissue microstructure alterations. To investigate cardiac tissue mechanics, a novel approach is proposed to model hyperelasticity and anisotropy. This approach is adaptable to various tissue microstructural constituent’s distributions in normal and pathological tissues. In this approach, the tissue is idealized as composite material consisting of cardiomyocytes distributed in extracellular matrix (ECM). The major myocardial tissue constituents are mitochondria and myofibrils while the main ECM’s constituents are collagen fibers and fibroblasts. Accordingly, finite element simulations of uniaxial and equibiaxial tests of normal and infarcted tissue samples with known amounts of these constituents were conducted, leading to corresponding tissue stress–strain data that were fitted to anisotropic/hyperelastic models. The models were validated where they showed good agreement characterized by maximum average stress-strain errors of 16.17 and 10.01% for normal and infarcted cardiac tissue, respectively. This demonstrate the effectiveness of the proposed models in accurate characterization of healthy and pathological cardiac tissues.  相似文献   
8.
The miscibility and mechanical properties of poly vinyl alcohol (PVA) and poly acrylic acid (PAA)-composited membranes were studied with molecular simulation. The Flory–Huggins parameters (δ) were calculated to prove the good miscibility of PVA and PAA. The radial distribution functions of hydroxyl and carboxyl atoms and the average number of H-bonds were observed to indicate the degree of physical cross-linking between PVA and PAA. The influences of intermolecular physical cross-linking on the glass transition temperature and mechanical properties were estimated. The results revealed that the PVA/PAA membrane with a composition of 2:3 has the best plastic properties, which exhibits a good application value. All of the simulated results showed good agreement with the experimental data. It indicates that the method presented in this work has a promising application prospect.  相似文献   
9.
Mast cells are widely distributed in the body and affect their surrounding environment through degranulation and secretion of cytokines. Conversely, mast cells are influenced by environmental stimuli such as cyclical mechanical stretch (CMS), such as that induced by heartbeat and respiration. Peripherally distributed mast cells are surrounded by extracellular matrix, where they bind IgE on their surface by expressing the high‐affinity Fc receptor for IgE (FcεRI), and they release mediators after cross‐linking of surface‐bound IgE by allergen. To analyse how CMS affects mast cell responses, we examined the effect of applying CMS on the behaviour of IgE‐bound mast cells (RBL‐2H3 cell line) adhering to fibronectin as a substitute for extracellular matrix. We found that CMS enhanced FcεRI‐mediated secretion in the presence of antigen (2,4‐dinitrophenol–bovine serum albumin). CMS increased expression of IL‐4 mRNA and secretion of IL‐4 protein. Western blot analysis showed that CMS changes the signal transduction in mitogen‐activated protein kinases and AKT, which in turn alters the regulation of IL‐4 and increases the secretion of IL‐4. These results suggest that CMS modulates the effect of mast cells on inflammation and resultant tissue remodelling. Understanding how CMS affects mast cell responses is crucial for developing therapies to treat mast cell‐related diseases. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
10.
Osteosarcoma is the most common primary malignant bone tumor with a very poor prognosis. Treating osteosarcoma remains a challenge due to its high transitivity. Tenascin-C, with large molecular weight variants including different combinations of its alternative spliced FNIII repeats, is specifically over expressed in tumor tissues. This study examined the expression of Tenascin-C FNIIIA1 in osteosarcoma tissues, and estimated the effect of mechanical stimulation on A1 expression in MG-63 cells. Through immunohistochemical analysis, we found that the A1 protein was expressed at a higher level in osteosarcoma tissues than in adjacent normal tissues. By cell migration assay, we observed that there was a significant correlation between A1 expression and MG-63 cell migra-tion. The relation is that Tenascin-C FNIIIA1 can promote MG-63 cell migration. According to our further study into the effect of mechanical stimulation on A1 expression in MG-63 cells, the mRNA and protein levels of A1 were significantly up-regulated under mechanical stress with the mTOR molecule proving indispensable. Meanwhile, 4E-BP1 and S6K1 (downstream molecule of mTOR) are necessary for A1 normal expression in MG-63 cells whether or not mechanical stress has been encountered. We found that Tenascin-C FNIIIA1 is over-expressed in osteosar-coma tissues and can promote MG-63 cell migration. Furthermore, mechanical stress can facilitate MG-63 cell migration though facilitating A1 overexpression with the necessary molecules (mTOR, 4E-BP1 and S6K1). In con-clusion, high expression of A1 may promote the meta-stasis of osteosarcoma by facilitating MG-63 cell migration. Tenascin-C FNIIIA1 could be used as an indicator in metastatic osteosarcoma patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号