首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6940篇
  免费   984篇
  国内免费   142篇
  2024年   1篇
  2023年   128篇
  2022年   54篇
  2021年   142篇
  2020年   259篇
  2019年   365篇
  2018年   283篇
  2017年   354篇
  2016年   346篇
  2015年   319篇
  2014年   411篇
  2013年   430篇
  2012年   351篇
  2011年   347篇
  2010年   295篇
  2009年   406篇
  2008年   420篇
  2007年   416篇
  2006年   362篇
  2005年   323篇
  2004年   295篇
  2003年   216篇
  2002年   218篇
  2001年   214篇
  2000年   175篇
  1999年   148篇
  1998年   140篇
  1997年   89篇
  1996年   94篇
  1995年   71篇
  1994年   71篇
  1993年   65篇
  1992年   41篇
  1991年   38篇
  1990年   29篇
  1989年   24篇
  1988年   12篇
  1987年   20篇
  1986年   15篇
  1985年   13篇
  1984年   20篇
  1983年   8篇
  1982年   13篇
  1981年   7篇
  1980年   7篇
  1979年   5篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1972年   1篇
排序方式: 共有8066条查询结果,搜索用时 31 毫秒
1.
There is accumulating evidence that individuals leave their natal area and select a breeding habitat non-randomly by relying upon information about their natal and future breeding environments. This variation in dispersal is not only based on external information (condition dependence) but also depends upon the internal state of individuals (phenotype dependence). As a consequence, not all dispersers are of the same quality or search for the same habitats. In addition, the individual's state is characterized by morphological, physiological or behavioural attributes that might themselves serve as a cue altering the habitat choice of conspecifics. These combined effects of internal and external information have the potential to generate complex movement patterns and could influence population dynamics and colonization processes. Here, we highlight three particular processes that link condition-dependent dispersal, phenotype-dependent dispersal and habitat choice strategies: (1) the relationship between the cause of departure and the dispersers' phenotype; (2) the relationship between the cause of departure and the settlement behaviour and (3) the concept of informed dispersal, where individuals gather and transfer information before and during their movements through the landscape. We review the empirical evidence for these processes with a special emphasis on vertebrate and arthropod model systems, and present case studies that have quantified the impacts of these processes on spatially structured population dynamics. We also discuss recent literature providing strong evidence that individual variation in dispersal has an important impact on both reinforcement and colonization success and therefore must be taken into account when predicting ecological responses to global warming and habitat fragmentation.  相似文献   
2.
Spatial sorting is a process that can contribute to microevolutionary change by assembling phenotypes through space, owing to nonrandom dispersal. Here we first build upon and develop the “neutral” version of the spatial sorting hypothesis by arguing that in systems that are not characterized by repeated range expansions, the evolutionary effects of variation in dispersal capacity and assortative mating might not be independent of but interact with natural selection. In addition to generating assortative mating, variation in dispersal capacity together with spatial and temporal variation in quality of spawning area is likely to influence both reproductive success and survival of spawning migrating individuals, and this will contribute to the evolution of dispersal‐enhancing traits. Next, we use a comparative approach to examine whether differences in spawning migration distance among 18 species of freshwater Anguilla eels have evolved in tandem with two dispersal‐favoring traits. In our analyses, we use information on spawning migration distance, body length, and vertebral number that was obtained from the literature, and a published whole mitochondrial DNA‐based phylogeny. Results from comparative analysis of independent contrasts showed that macroevolutionary shifts in body length throughout the phylogeny have been associated with concomitant shifts in spawning migration. Shifts in migration distance were not associated with shifts in number of vertebrae. These findings are consistent with the hypothesis that spatial sorting has contributed to the evolution of more elongated bodies in species with longer spawning migration distances, or resulted in evolution of longer migration distances in species with larger body size. This novel demonstration is important in that it expands the list of ecological settings and hierarchical levels of biological organization for which the spatial sorting hypothesis seems to have predictive power.  相似文献   
3.
Differential seed dispersal, in which selfed and outcrossed seeds possess different dispersal propensities, represents a potentially important individual‐level association. A variety of traits can mediate differential seed dispersal, including inflorescence and seed size variation. However, how natural selection shapes such associations is poorly known. Here, we developed theoretical models for the evolution of mating system and differential seed dispersal in metapopulations, incorporating heterogeneous pollination, dispersal cost, cost of outcrossing and environment‐dependent inbreeding depression. We considered three models. In the ‘fixed dispersal model’, only selfing rate is allowed to evolve. In the ‘fixed selfing model’, in which selfing is fixed but differential seed dispersal can evolve, we showed that natural selection favours a higher, equal or lower dispersal rate for selfed seeds to that for outcrossed seeds. However, in the ‘joint evolution model’, in which selfing and dispersal can evolve together, evolution necessarily leads to higher or equal dispersal rate for selfed seeds compared to that for outcrossed. Further comparison revealed that outcrossed seed dispersal is selected against by the evolution of mixed mating or selfing, whereas the evolution of selfed seed dispersal undergoes independent processes. We discuss the adaptive significance and constraints for mating system/dispersal association.  相似文献   
4.
5.
6.
7.
Adaptation to heterogeneous environments can occur via phenotypic plasticity, but how often this occurs is unknown. Reciprocal transplant studies provide a rich dataset to address this issue in plant populations because they allow for a determination of the prevalence of plastic versus canalized responses. From 31 reciprocal transplant studies, we quantified the frequency of five possible evolutionary patterns: (1) canalized response–no differentiation: no plasticity, the mean phenotypes of the populations are not different; (2) canalized response–population differentiation: no plasticity, the mean phenotypes of the populations are different; (3) perfect adaptive plasticity: plastic responses with similar reaction norms between populations; (4) adaptive plasticity: plastic responses with parallel, but not congruent reaction norms between populations; and (5) nonadaptive plasticity: plastic responses with differences in the slope of the reaction norms. The analysis included 362 records: 50.8% life‐history traits, 43.6% morphological traits, and 5.5% physiological traits. Across all traits, 52% of the trait records were not plastic, and either showed no difference in means across sites (17%) or differed among sites (83%). Among the 48% of trait records that showed some sort of plasticity, 49.4% showed perfect adaptive plasticity, 19.5% adaptive plasticity, and 31% nonadaptive plasticity. These results suggest that canalized responses are more common than adaptive plasticity as an evolutionary response to environmental heterogeneity.  相似文献   
8.
9.
Few regions have been more severely impacted by climate change in the USA than the Desert Southwest. Here, we use ecological genomics to assess the potential for adaptation to rising global temperatures in a widespread songbird, the willow flycatcher (Empidonax traillii), and find the endangered desert southwestern subspecies (E. t. extimus) most vulnerable to future climate change. Highly significant correlations between present abundance and estimates of genomic vulnerability – the mismatch between current and predicted future genotype–environment relationships – indicate small, fragmented populations of the southwestern willow flycatcher will have to adapt most to keep pace with climate change. Links between climate‐associated genotypes and genes important to thermal tolerance in birds provide a potential mechanism for adaptation to temperature extremes. Our results demonstrate that the incorporation of genotype–environment relationships into landscape‐scale models of climate vulnerability can facilitate more precise predictions of climate impacts and help guide conservation in threatened and endangered groups.  相似文献   
10.
东南亚地处热带,生物多样性极为丰富,可分为4个热点地区:印度-缅甸区的中南半岛、巽他区(含马来半岛、婆罗洲、苏门答腊岛)、菲律宾区(菲律宾群岛)、华莱士区(苏拉威西岛、爪哇岛、马鲁古群岛、小巽他群岛等)。中南半岛在泥盆纪便已是欧亚大陆的一部分,在印度板块撞击欧亚大陆之后受挤压而出;巽他区来自于冈瓦纳古陆和澳洲古陆;菲律宾群岛部分来自于劳亚古陆的碎片向南漂移,部分来自于太平洋西南岛弧的向北迁移;华莱士区则是劳亚古陆碎片、太平洋西南岛弧以及澳洲古陆北侧碎片的组合。巽他区地处赤道,常年温湿;菲律宾区、华莱士区、中南半岛则都受到不同程度的季风气候决定的干湿季变动。地质历史和季风气候影响程度的不同,奠定了东南亚4个生物多样性热点地区的雏形。华莱士区保存有大量的早期被子植物原始类群如睡莲目(Nymphaeales)和木兰藤目(Austrobaileyales),是现代被子植物起源地和冰期避难所之一。巽他区(婆罗洲)和中南半岛是亚洲热带植物的现代分布中心和"进化前沿",是整个东南亚地区重要的种源;而华莱士区的爪哇岛和小巽他群岛主要是物种迁入和中转的种库。这样的物种形成历史与迁移格局,塑造了东南亚4个生物多样性热点地区物种多样性水平与地理范围的基本格局。巽他区和印度-缅甸区曾在冰期通过陆桥相连,使得东南亚成为周边植物扩散交汇的一个"十字路口"。但是,人们对东南亚生物多样性热点地区的物种长距离扩散规律及植物地理学分区仍存在分歧;东南亚与邻近生物多样性热点地区如新几内亚岛、西高止山脉-斯里兰卡、中国横断山区的历史联系,还尚待深入解析。利用现代分子生物学技术,覆盖整个东南亚地区进行全域取样开展代表性类群的物种迁移与生物地理学研究,有望进一步揭示东南亚生物多样性热点地区的形成过程与演化趋势。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号