首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2069篇
  免费   258篇
  国内免费   608篇
  2023年   51篇
  2022年   58篇
  2021年   69篇
  2020年   99篇
  2019年   125篇
  2018年   100篇
  2017年   113篇
  2016年   91篇
  2015年   89篇
  2014年   101篇
  2013年   146篇
  2012年   104篇
  2011年   121篇
  2010年   103篇
  2009年   144篇
  2008年   137篇
  2007年   140篇
  2006年   136篇
  2005年   105篇
  2004年   87篇
  2003年   84篇
  2002年   71篇
  2001年   84篇
  2000年   79篇
  1999年   52篇
  1998年   54篇
  1997年   48篇
  1996年   45篇
  1995年   32篇
  1994年   27篇
  1993年   29篇
  1992年   34篇
  1991年   21篇
  1990年   25篇
  1989年   21篇
  1988年   17篇
  1987年   12篇
  1986年   12篇
  1985年   7篇
  1984年   13篇
  1983年   2篇
  1982年   14篇
  1981年   9篇
  1980年   6篇
  1979年   5篇
  1978年   3篇
  1973年   2篇
  1971年   1篇
  1958年   2篇
  1950年   1篇
排序方式: 共有2935条查询结果,搜索用时 234 毫秒
1.
Communities change with time. Studying long-term change in community structure permits deeper understanding of community dynamics, and allows us to forecast community responses to perturbations at local (e.g. fire, secondary succession) and global (e.g. desertification, global warming) spatial scales. Monitoring efforts exploring the temporal dynamics of indicator taxa are therefore a critical part of conservation agendas. Here, the temporal dynamics of the Otongachi leaf litter ant community, occurring in a cloud forest in coastal Ecuador, were explored. By sampling this community six times over eleven years, I assessed how the ant fauna caught by Winkler traps (more diverse and cryptic fauna) and caught by pitfall traps (larger, more mobile fauna) changed over time. The Otongachi leaf litter ant community was dynamic. Although species richness in the community remained constant, temporal turnover of species was high: on average, 51% of the ant species in Winkler traps, and 56% of those in pitfall traps, were replaced with other ant species from one year to the other. Shifts in the rank abundance of species in the community were also large across the eleven years and, on average, shifts in the rank abundance of species collected by Winkler traps doubled those occurring in pitfall traps from one census to the other. In spite of these trends, the Otongachi ant fauna showed no (Winkler) or weak (pitfall) evidence of directional change (towards a new community). Thus, this tropical ant community can be divided in two community compartments. The Winkler compartment composed by a more diverse and cryptic ant fauna appears to be resilient and stable in time. The pitfall compartment composed by larger and more mobile ants may be prone to respond to disturbance. This study suggests that 1) species appearing/disappearing from a site may be rather the rule, difficult to separate from responses to ecological stress. 2) Conclusions made in short-term studies, or studies comparing two (e.g. before and after) snapshots of a community, should thus be revisited. Finally, 3) the ant fauna caught by pitfall traps (a rather simple and cheap survey method) is the most likely community compartment to indicate ecological perturbation. This study adds to the growing evidence that using ants as ecological indicators should incorporate long-term temporal dynamics.  相似文献   
2.
  1. Macrophytes play a key role in assimilating and storing nutrients in shallow aquatic ecosystems, but their capacity to act as a long‐term nutrient sink can be affected by water level fluctuations. Water level drawdown in reservoirs followed by rewetting may mobilise a significant nutrient pool. These nutrients can be stored in the littoral zone in dead or dormant macrophytes, and in the desiccated sediments within the macrophyte beds. However, the contribution of desiccated macrophyte beds to nutrient release upon rewetting has not been well quantified.
  2. Our study examined the effect of rewetting the previously desiccated waterlily Nymphoides indica (Menyanthaceae) in treatments (1) without sediments (N.i.?Sed), and (2) with sediments in N. indica beds (N.i.+Sed) on water quality.
  3. We found that longer drying duration increased dissolved nutrients (nitrate/nitrite, ammonium and total dissolved organic nitrogen/phosphorus) and organic carbon release from N.i.+Sed and N.i.?Sed treatments after rewetting. In the N.i.+Sed treatment with <4 weeks of desiccation, all N. indica plants regenerated from roots after subsequent rewetting. In addition, the resulting nutrient/carbon release was not significantly different to the control treatment which did not have desiccation. A significant increase in dissolved nutrient and carbon concentrations in the water column was found in treatments with more than 10 weeks of desiccation followed by rewetting. This coincided with the sediment reaching its minimum moisture content. Furthermore, chlorophyll a (Chl‐a) concentrations in the overlying water also increased with more than 10 weeks of desiccation, presumably in response to the increased nutrient availability and the removal of competition for nutrients from macrophytes.
  4. On the basis of our laboratory experiments, we calculated the potential effect of desiccated and rewetted N. indica beds on water quality in a local N. indica‐dominated reservoir after water level drawdown. We also separated the contribution of N. indica plants from their macrophyte beds on water quality changes. Fourteen days after rewetting, the total dissolved nutrients released from N. indica alone (N.i.?Sed) could contribute 0.5% of the total nitrogen and 29% of total phosphorus to the water column concentrations in the whole reservoir. In contrast, N. indica beds (N.i.+Sed) contributed more total dissolved nitrogen (4.3%) but less total dissolved phosphorus (0.3%) release into the water column. The higher nitrogen release for the N.i.+Sed treatment was likely due to the organic matter decomposition in the sediment in macrophyte beds. In contrast, the less dissolved phosphorus release, compared with the N. indica alone, was likely the result of phosphate adsorption by previously desiccated soil particles and/or assimilation by phytoplankton, since the phytoplankton biomass (as measured by Chl‐a concentrations) was significantly higher in the N.i.+Sed treatment.
  5. This study highlights the importance of managing both the duration and rate of water level drawdown in reservoirs to prevent rooted macrophytes, like N. indica, from becoming a source of nutrients, which may cause deterioration in water quality.
  相似文献   
3.
Senescent, naturally dried leaves of Typha domingensis were incubated inthe littoral region of a coastal lagoon and epiphytic bacterial volume,abundance, biomass and secondary productivity were measured during 127 daysof decomposition. The peak of cell abundance was registered at t =127 days when expressed per leaf surface area (10.07×107cells cm-2; 7.26 µgC cm-2), and at t= 26 days when expressed per biofilm dry mass (38.10 ×107 cells (mgDM biofilm)-1, 30.52 µgC(mgDM biofilm)-1). The highest values of bacterial biovolumesand lower turnover time were usually obtained in the beginning of thecolonization. Leu:Tdr ratios were also higher in the beginning of thecolonization, when bacterial community presented unbalanced metabolism.Consequently, the highest discrepancies between the bacterial secondaryproduction estimated by leu and Tdr incorporation were observed in the first2 days of decomposition. On average, the bacterial secondary productivityestimated by leu incorporation was 2.1 times higher than the valuesestimated by Tdr incorporation when the empirical factor for Tdr wasobtained from the relationship between Tdr and biomass increment. Thisdifference increased to 4.2 when the empirical factor was obtained from therelationship between Tdr and cell numbers increment. An average of bothmethods (0.0037 to 0.1397 µgC cm-2 h-1)produced results that fall within the range reported in the literature forepiphytic bacteria of freshwater ecosystems.  相似文献   
4.
Nitrogen (N) fixation in moss‐associated cyanobacteria is one of the main sources of available N for N‐limited ecosystems such as subarctic tundra. Yet, N2 fixation in mosses is strongly influenced by soil moisture and temperature. Thus, temporal scaling up of low‐frequency in situ measurements to several weeks, months or even the entire growing season without taking into account changes in abiotic conditions cannot capture the variation in moss‐associated N2 fixation. We therefore aimed to estimate moss‐associated N2 fixation throughout the snow‐free period in subarctic tundra in field experiments simulating climate change: willow (Salix myrsinifolia) and birch (Betula pubescens spp. tortuosa) litter addition, and warming. To achieve this, we established relationships between measured in situ N2 fixation rates and soil moisture and soil temperature and used high‐resolution measurements of soil moisture and soil temperature (hourly from May to October) to model N2 fixation. The modelled N2 fixation rates were highest in the warmed (2.8 ± 0.3 kg N ha?1) and birch litter addition plots (2.8 ± 0.2 kg N ha?1), and lowest in the plots receiving willow litter (1.6 ± 0.2 kg N ha?1). The control plots had intermediate rates (2.2 ± 0.2 kg N ha?1). Further, N2 fixation was highest during the summer in the warmed plots, but was lowest in the litter addition plots during the same period. The temperature and moisture dependence of N2 fixation was different between the climate change treatments, indicating a shift in the N2 fixer community. Our findings, using a combined empirical and modelling approach, suggest that a longer snow‐free period and increased temperatures in a future climate will likely lead to higher N2 fixation rates in mosses. Yet, the consequences of increased litter fall on moss‐associated N2 fixation due to shrub expansion in the Arctic will depend on the shrub species’ litter traits.  相似文献   
5.
The incomplete combustion of vegetation and dead organic matter by landscape fires creates recalcitrant pyrogenic carbon (PyC), which could be consequential for the global carbon budget if changes in fire regime, climate, and atmospheric CO2 were to substantially affect gains and losses of PyC on land and in oceans. Here, we included global PyC cycling in a coupled climate–carbon model to assess the role of PyC in historical and future simulations, accounting for uncertainties through five sets of parameter estimates. We obtained year‐2000 global stocks of (Central estimate, likely uncertainty range in parentheses) 86 (11–154), 47 (2–64), and 1129 (90–5892) Pg C for terrestrial residual PyC (RPyC), marine dissolved PyC, and marine particulate PyC, respectively. PyC cycling decreased atmospheric CO2 only slightly between 1751 and 2000 (by 0.8 Pg C for the Central estimate) as PyC‐related fluxes changed little over the period. For 2000 to 2300, we combined Representative Concentration Pathways (RCPs) 4.5 and 8.5 with stable or continuously increasing future fire frequencies. For the increasing future fire regime, the production of new RPyC generally outpaced the warming‐induced accelerated loss of existing RPyC, so that PyC cycling decreased atmospheric CO2 between 2000 and 2300 for most estimates (by 4–8 Pg C for Central). For the stable fire regime, however, PyC cycling usually increased atmospheric CO2 (by 1–9 Pg C for Central), and only the most extreme choice of parameters maximizing PyC production and minimizing PyC decomposition led to atmospheric CO2 decreases under RCPs 4.5 and 8.5 (by 5–8 Pg C). Our results suggest that PyC cycling will likely reduce the future increase in atmospheric CO2 if landscape fires become much more frequent; however, in the absence of a substantial increase in fire frequency, PyC cycling might contribute to, rather than mitigate, the future increase in atmospheric CO2.  相似文献   
6.
A. J. Boulton 《Hydrobiologia》1991,211(2):123-136
Eucalypt leaf packs were placed at two sites in an intermittent stream during summer to examine the hypothesis that terrestrially-exposed leaf litter accumulates a richer microbial flora than submerged leaves — a phenomenon observed in Canadian temporary vernal pools. This did not occur; during the experiment, microbial biomass (as ATP) rose steadily on submerged leaves but remained low on terrestrially-exposed leaves. Densities of most functional feeding groups on the submerged leaves increased with time. Scrapers appeared to be more important than shredders in eucalypt leaf breakdown at both sites.  相似文献   
7.
The amount of variation in species composition among sampling units or beta diversity has become a primary tool for connecting the spatial structure of species assemblages to ecological processes. Many different measures of beta diversity have been developed. Among them, the total variance in the community composition matrix has been proposed as a single‐number estimate of beta diversity. In this study, I first show that this measure summarizes the compositional variation among sampling units after nonlinear transformation of species abundances. Therefore, it is not always adequate for estimating beta diversity. Next, I propose an alternative approach for calculating beta diversity in which variance is substituted by a weighted measure of concentration (i.e., an inverse measure of evenness). The relationship between this new measure of beta diversity and so‐called multiple‐site dissimilarity measures is also discussed.  相似文献   
8.
The composite TiO2/Mo-TiO2 were prepared by a modified sol-gel method. The prepared catalysts were characterized by X-ray diffraction, BET analysis, SEM, X-ray photoelectron spectroscopy, and UV–vis diffused reflectance spectroscopy techniques. The structural characterization results demonstrated that Mo was successfully doped into the TiO2 lattice and caused slight changes in the physiochemical properties. The UV–vis DRS showed a red shift of the adsorption edge to the visible region. The photocatalytic decomposition efficiencies of the catalysts were examined with toluene as a typical VOC in a continuous flow reactor. The photocatalytic activity of the n-n heterogeneous TiO2/Mo-TiO2 was greater than that of pure TiO2 and Mo-TiO2, and the catalyst containing a Mo/Ti mole ratio of 2.5% exhibited optimum photocatalytic properties. In general, a relative humidity of 35%, a higher oxygen content, a lower initial toluene concentration, and a higher UV intensity were beneficial for toluene decomposition.  相似文献   
9.
This research establishes a residential indirect carbon emissions model through input–output structure decomposition analysis (IO-SDA) and LMDI, analyses the influencing factors affecting urban and rural residential carbon emissions indicators in Beijing through input–output tables from 2000 to 2010, and calculates the direct carbon emissions from residential consumption. As the results suggest, the total carbon emissions from residential consumption in Beijing showed volatility. Growing rural and urban differences in direct emissions, and for indirect emissions, mean that urban greatly exceeds rural in this regard. Rising per capita GDP and population, as well as intermediate demand and sectoral emissions intensity change induce growth in indirect emissions in both urban and rural settings: of which, per capita GDP contributes the most. Declining energy intensity contributes the most to emission reductions, followed by residential consumption rates, the rural to urban consumption ratio and consumption structure effects are much smaller.  相似文献   
10.
Respiration, which is the second most important carbon flux in ecosystems following gross primary productivity, is typically represented in biogeochemical models by simple temperature dependence equations. These equations were established in the 19th century and have been modified very little since then. Recent applications of these equations to data on soil respiration have produced highly variable apparent temperature sensitivities. This paper searches for reasons for this variability, ranging from biochemical reactions to ecosystem‐scale substrate supply. For a simple membrane‐bound enzymatic system that follows Michaelis–Menten kinetics, the temperature sensitivities of maximum enzyme activity (Vmax) and the half‐saturation constant that reflects the affinity of the enzyme for the substrate (Km) can cancel each other to produce no net temperature dependence of the enzyme. Alternatively, when diffusion of substrates covaries with temperature, then the combined temperature sensitivity can be higher than that of each individual process. We also present examples to show that soluble carbon substrate supply is likely to be important at scales ranging from transport across membranes, diffusion through soil water films, allocation to aboveground and belowground plant tissues, phenological patterns of carbon allocation and growth, and intersite differences in productivity. Robust models of soil respiration will require that the direct effects of substrate supply, temperature, and desiccation stress be separated from the indirect effects of temperature and soil water content on substrate diffusion and availability. We speculate that apparent Q10 values of respiration that are significantly above about 2.5 probably indicate that some unidentified process of substrate supply is confounded with observed temperature variation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号