首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   742篇
  国内免费   9篇
  完全免费   133篇
  2019年   25篇
  2018年   72篇
  2017年   37篇
  2016年   33篇
  2015年   47篇
  2014年   44篇
  2013年   44篇
  2012年   59篇
  2011年   64篇
  2010年   57篇
  2009年   85篇
  2008年   55篇
  2007年   69篇
  2006年   60篇
  2005年   56篇
  2004年   39篇
  2003年   20篇
  2002年   10篇
  2001年   1篇
  2000年   3篇
  1998年   2篇
  1997年   1篇
  1982年   1篇
排序方式: 共有884条查询结果,搜索用时 46 毫秒
1.
The majority of plant disease resistance genes are members of very large multigene families. They encode structurally related proteins containing nucleotide binding site domains (NBS) and C-terminal leucine rich repeats (LRR). The N-terminal region of some resistance genes contain a short sequence called TIR with homology to the animal innate immunity factors, Toll and interleukin receptor-like genes. Only a few plant resistance genes have been functionally analyzed and the origin and evolution of plant resistance genes remain obscure. We have reconstructed gene phylogeny by exhaustive analysis of available genome and amplified NBS domain sequences. Our study shows that NBS domains faithfully predict whole gene structure and can be divided into two major groups. Group I NBS domains contain group-specific motifs that are always linked with the TIR sequence in the N terminus. Significantly, Group I NBS domains and their associated TIR domains are widely distributed in dicot species but were not detected in cereal databases. Furthermore, Group I specific NBS sequences were readily amplified from dicot genomic DNA but could not be amplified from cereal genomic DNA. In contrast, Group II NBS domains are always associated with putative coiled-coil domains in their N terminus and appear to be present throughout the angiosperms. These results suggest that the two main groups of resistance genes underwent divergent evolution in cereal and dicot genomes and imply that their cognate signaling pathways have diverged as well. Received: 17 May 1999 / Accepted: 25 September 1999  相似文献
2.
Antimicrobial peptides (AMPs) are essential components of innate immunity in a range of species from Drosophila to humans and are generally thought to act by disrupting the membrane integrity of microbes. In order to discover novel AMPs in the chicken, we have implemented a bioinformatic approach that involves the clustering of more than 420,000 chicken expressed sequence tags (ESTs). Similarity searching of proteins—predicted to be encoded by these EST clusters—for homology to known AMPs has resulted in the in silico identification of full-length sequences for seven novel gallinacins (Gal-4 to Gal-10), a novel cathelicidin and a novel liver-expressed antimicrobial peptide 2 (LEAP-2) in the chicken. Differential gene expression of these novel genes has been demonstrated across a panel of chicken tissues. An evolutionary analysis of the gallinacin family has detected sites—primarily in the mature AMP—that are under positive selection in these molecules. The functional implications of these results are discussed.  相似文献
3.
The potential induction of inflammatory cytokines and interferon responses by small-interfering RNAs (siRNAs) represents a major obstacle for their use as inhibitors of gene expression. Therapeutic applications of siRNAs will require a better understanding of the mechanisms that trigger such unwanted effects, especially in freshly isolated human cells. Surprisingly, the induction of tumor necrosis factor (TNF-alpha) and interleukin-6 (IL-6) in adherent peripheral blood mononuclear cells (PBMC) was not restricted to double-stranded siRNAs, because induction was also obtained with single-stranded siRNAs (sense or antisense strands). The immunostimulatory effects were sequence-dependent, since only certain sequences are prone to induce inflammatory responses while others are not. The induction of TNF-alpha, IL-6 and interferon alpha (IFN-alpha) was chloroquine-sensitive and dependent more likely on endosomal Toll-like receptor signaling in particular TLR8. Indeed, no significant immunostimulatory effects were detected when either double or single-stranded siRNAs were delivered directly to cytoplasm via electroporation. Both RNA types activated a NF-kappaB promoter-driven luciferase gene in transiently transfected human adherent PBMC. Moreover, culture of immature dendritic cells with either double or single-stranded siRNAs stimulated interleukin-12 production and induced the expression of CD83, an activation marker. Interestingly, several double-stranded siRNAs did not induce TNF-alpha, IL-6 and IFN-alpha production, however, their single-stranded sense or antisense did. Taken together, the present data indicate for the first time that the induction of inflammatory cytokines and IFN-alpha responses by either double-stranded or single-stranded siRNAs in adherent PBMC is sequence-dependent and requires endosomal intracellular signaling. The finding that endosomal localization of self-RNAs (sense strands) can trigger Toll-like receptor signaling in adherent human PBMC is intriguing because it indicates that endosomal self-RNAs can display a molecular pattern capable for activating innate immunity.  相似文献
4.
Antimicrobial peptides are essential components of innate immunity and are generally thought to act by disrupting the membrane integrity of microbes. Here we report the discovery of two novel chicken -defensins, gallinacin (Gal)-11 and Gal-12, found by hidden Markov model profile searching of the chicken genome. We have sequenced the genes and elucidated the 3UTR of Gal-11. Differential mRNA expression of these novel genes has been shown across a panel of chicken tissues. Gal-11 mRNA was highly expressed in the small intestine, the liver, the gall bladder and the spleen and also showed moderate expression in several other areas of the chicken anatomy, whilst Gal-12 mRNA was found only in the liver and the gall bladder. Antimicrobial activity of synthetic Gal-11 has been demonstrated against a range of bacteria and is predominantly active against the intestinal pathogens Salmonella typhimurium and Listeria monocytogenes.  相似文献
5.
Cationic liposome-mediated delivery of siRNAs in adult mice   总被引:13,自引:0,他引:13  
RNA interference mediated by small interfering RNAs (siRNAs) is a powerful tool for dissecting gene function and drug target validation. siRNAs can be synthesized in large quantities and thus can be used to analyze a large number of sequences emerging from genome projects in a cost-effective manner. However, the major obstacle to the use of siRNAs as therapeutics is the difficulty involved in effective in vivo delivery. We used a fluorescein-labeled siRNA to investigate cationic liposome-mediated intravenous and intraperitoneal delivery in adult mice. We show that this simple approach can deliver siRNAs into various cell types. In addition, we show that in contrast to mouse cells, siRNAs can activate the non-specific pathway in human freshly isolated monocytes, resulting in TNF-alpha and IL-6 production. Taken together, the data provide a basis for lipid-mediated systemic delivery of siRNAs and indicate that certain siRNA sequences can activate the innate immunity response genes that can be beneficial for the treatment of cancer.  相似文献
6.
The complement system in teleosts   总被引:13,自引:0,他引:13  
Complement, an important component of the innate immune system, is comprised of about 35 individual proteins. In mammals, activation of complement results in the generation of activated protein fragments that play a role in microbial killing, phagocytosis, inflammatory reactions, immune complex clearance, and antibody production. Fish appear to possess activation pathways similar to those in mammals, and the fish complement proteins identified thus far show many homologies to their mammalian counterparts. Because information about complement proteins, regulatory proteins, and complement receptors in fish is far from complete, it is unclear whether all the complement functions that have been identified in mammals also occur in fish. However, it has been clearly demonstrated that fish complement can lyse foreign cells and opsonise foreign organisms for destruction by phagocytes. There are also indications that complement fragments participate in inflammatory reactions. Fish possess multiple isoforms of several complement proteins, such as C3 and factor B. It has been hypothesised that the function of this diversity in complement proteins serves to expand their innate immune recognition capacity and response. Understanding the functions of complement in fish and the roles the individual proteins, including the various isoforms, play in host defence, is important not only for understanding the evolution of this system but also for the development of new strategies in fish health management.  相似文献
7.
Human Antimicrobial Peptides: Defensins, Cathelicidins and Histatins   总被引:12,自引:0,他引:12  
Antimicrobial peptides, which have been isolated from many bacteria, fungi, plants, invertebrates and vertebrates, are an important component of the natural defenses of most living organisms. The isolated peptides are very heterogeneous in length, sequence and structure, but most of them are small, cationic and amphipathic. These peptides exhibit broad-spectrum activity against Gram-positive and Gram-negative bacteria, yeasts, fungi and enveloped viruses. A wide variety of human proteins and peptides also have antimicrobial activity and play important roles in innate immunity. In this review we discuss three important groups of human antimicrobial peptides. The defensins are cationic non-glycosylated peptides containing six cysteine residues that form three intramolecular disulfide bridges, resulting in a triple-stranded β-sheet structure. In humans, two classes of defensins can be found: α-defensins and β-defensins. The defensin-related HE2 isoforms will also be discussed. The second group is the family of histatins, which are small, cationic, histidine-rich peptides present in human saliva. Histatins adopt a random coil conformation in aqueous solvents and form α-helices in non-aqueous solvents. The third group comprises only one antimicrobial peptide, the cathelicidin LL−37. This peptide is derived proteolytically from the C-terminal end of the human CAP18 protein. Just like the histatins, it adopts a largely random coil conformation in a hydrophilic environment, and forms an α-helical structure in a hydrophobic environment.  相似文献
8.
Early events in crustacean innate immunity   总被引:11,自引:0,他引:11  
9.
Advances in proteomic techniques have allowed the large-scale identification of phosphorylation sites in complex protein samples, but new biological insight requires an understanding of their in vivo dynamics. Here, we demonstrate the use of a stable isotope-based quantitative approach for pathway discovery and structure-function studies in Arabidopsis cells treated with the bacterial elicitor flagellin. The quantitative comparison identifies individual sites on plasma membrane (PM) proteins that undergo rapid phosphorylation or dephosphorylation. The data reveal both divergent dynamics of different sites within one protein and coordinated regulation of homologous sites in related proteins, as found for the PM H(+)-ATPases AHA1, 2 and 3. Strongly elicitor-responsive phosphorylation sites may reflect direct regulation of protein activity. We confirm this prediction for RbohD, an NADPH oxidase that mediates the rapid production of reactive oxygen species (ROS) in response to elicitors and pathogens. Plant NADPH oxidases are structurally distinct from their mammalian homologues, and regulation of the plant enzymes is poorly understood. On RbohD, we found both unchanging and strongly induced phosphorylation sites. By complementing an RbohD mutant plant with non-phosphorylatable forms of RbohD, we show that only those sites that undergo differential regulation are required for activation of the protein. These experiments demonstrate the potential for use of quantitative phosphoproteomics to determine regulatory mechanisms at the molecular level and provide new insights into innate immune responses.  相似文献
10.
Natural killer cells and innate immunity to protozoan pathogens   总被引:8,自引:0,他引:8  
Natural killer (NK) cells are lymphoid cells that mediate significant cytotoxic activity and produce high levels of pro-inflammatory cytokines in response to infection. During viral infection, NK cell cytotoxicity and cytokine production is induced principally by monocyte-macrophage- and dendritic cell-derived cytokines but virally encoded ligands for NK cells are also beginning to be described. NK derived interferon-gamma (IFN-gamma) production is also essential for control of several protozoal infections including toxoplasmosis, trypanosomiasis, leishmaniasis and malaria. The activation of NK cells by protozoan pathogens is also believed to be cytokine-mediated although some recent studies suggest that direct recognition of parasites by NK cells also occurs. Both indirect signalling via accessory cell-derived cytokines and direct signalling, presumably through NK receptors, are needed in order for human malaria parasites (Plasmodium falciparum) to optimally stimulate NK activity.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号