首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2943篇
  免费   289篇
  国内免费   200篇
  2024年   3篇
  2023年   88篇
  2022年   99篇
  2021年   175篇
  2020年   201篇
  2019年   191篇
  2018年   178篇
  2017年   136篇
  2016年   127篇
  2015年   167篇
  2014年   203篇
  2013年   269篇
  2012年   148篇
  2011年   174篇
  2010年   107篇
  2009年   132篇
  2008年   144篇
  2007年   144篇
  2006年   128篇
  2005年   96篇
  2004年   80篇
  2003年   66篇
  2002年   54篇
  2001年   64篇
  2000年   34篇
  1999年   23篇
  1998年   24篇
  1997年   25篇
  1996年   19篇
  1995年   15篇
  1994年   12篇
  1993年   12篇
  1992年   8篇
  1991年   13篇
  1990年   2篇
  1989年   9篇
  1988年   11篇
  1987年   8篇
  1986年   10篇
  1985年   5篇
  1982年   4篇
  1981年   5篇
  1980年   3篇
  1979年   5篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1972年   2篇
排序方式: 共有3432条查询结果,搜索用时 31 毫秒
1.
Computer-aided antibody engineering has been successful in the design of new biologics for disease diagnosis and therapeutic interventions. Interleukin-6 (IL-6), a well-recognized drug target for various autoimmune and inflammatory diseases such as rheumatoid arthritis, multiple sclerosis, and psoriasis, was investigated in silico to design potential lead antibodies. Here, crystal structure of IL-6 along with monoclonal antibody olokizumab was explored to predict antigen–antibody (Ag???Ab)-interacting residues using DiscoTope, Paratome, and PyMOL. Tyr56, Tyr103 in heavy chain and Gly30, Ile31 in light chain of olokizumab were mutated with residues Ser, Thr, Tyr, Trp, and Phe. A set of 899 mutant macromolecules were designed, and binding affinity of these macromolecules to IL-6 was evaluated through Ag???Ab docking (ZDOCK, ClusPro, and Rosetta server), binding free-energy calculations using Molecular Mechanics/Poisson Boltzman Surface Area (MM/PBSA) method, and interaction energy estimation. In comparison to olokizumab, eight newly designed theoretical antibodies demonstrated better result in all assessments. Therefore, these newly designed macromolecules were proposed as potential lead antibodies to serve as a therapeutics option for IL-6-mediated diseases.  相似文献   
2.
In clinical research and in more general classification problems, a frequent concern is the reliability of a rating system. In the absence of a gold standard, agreement may be considered as an indication of reliability. When dealing with categorical data, the well‐known kappa statistic is often used to measure agreement. The aim of this paper is to obtain a theoretical result about the asymptotic distribution of the kappa statistic with multiple items, multiple raters, multiple conditions, and multiple rating categories (more than two), based on recent work. The result settles a long lasting quest for the asymptotic variance of the kappa statistic in this situation and allows for the construction of asymptotic confidence intervals. A recent application to clinical endoscopy and to the diagnosis of inflammatory bowel diseases (IBDs) is shortly presented to complement the theoretical perspective.  相似文献   
3.
The fungal pathogen, Phaeocryptopus gaeumannii, causing Swiss needle cast (SNC) occurs wherever Douglas‐fir is found but disease damage is believed to be limited in the U.S. Pacific Northwest (PNW) to the Coast Range of Oregon and Washington (Hansen et al., Plant Disease, 2000, 84, 773; Rosso & Hansen, Phytopathology, 2003, 93, 790; Shaw, et al., Journal of Forestry, 2011, 109, 109). However, knowledge remains limited on the history and spatial distribution of SNC impacts in the PNW. We reconstructed the history of SNC impacts on mature Douglas‐fir trees based on tree‐ring width chronologies from western Oregon. Our findings show that SNC impacts on growth occur wherever Douglas‐fir is found and is not limited to the coastal fog zone. The spatiotemporal patterns of growth impact from SNC disease were synchronous across the region, displayed periodicities of 12–40 years, and strongly correlated with winter and summer temperatures and summer precipitation. The primary climatic factor limiting pathogen dynamics varied spatially by location, topography, and elevation. SNC impacts were least severe in the first half of the 20th century when climatic conditions during the warm phase of the Pacific Decadal Oscillation (1924–1945) were less conducive to pathogen development. At low‐ to mid‐elevations, SNC impacts were most severe in 1984–1986 following several decades of warmer winters and cooler, wetter summers including a high summer precipitation anomaly in 1983. At high elevations on the west slope of the Cascade Range, SNC impacts peaked several years later and were the greatest in the 1990s, a period of warmer winter temperatures. Climate change is predicted to result in warmer winters and will likely continue to increase SNC severity at higher elevations, north along the coast from northern Oregon to British Columbia, and inland where low winter temperatures currently limit growth of the pathogen. Our findings indicate that SNC may become a significant forest health problem in areas of the PNW beyond the coastal fog zone.  相似文献   
4.
Protein aggregation leads to several burdensome human maladies, but a molecular level understanding of how human proteome has tackled the threat of aggregation is currently lacking. In this work, we survey the human proteome for incidence of aggregation prone regions (APRs), by using sequences of experimentally validated amyloid‐fibril forming peptides and via computational predictions. While approximately 30 human proteins are currently known to be amyloidogenic, we found that 260 proteins (~1% of human proteome) contain at least one experimentally validated amyloid‐fibril forming segment. Computer predictions suggest that more than 80% of the human proteins contain at least one potential APR and approximately two‐thirds (65%) contain two or more APRs; spanning 3–5% of their sequences. Sequence randomizations show that this apparently high incidence of APRs has been actually significantly reduced by unique amino acid composition and sequence patterning of human proteins. The human proteome has utilized a wide repertoire of sequence‐structural optimization strategies, most of them already known, to minimize deleterious consequences due to the presence of APRs while simultaneously taking advantage of their order promoting properties. This survey also found that APRs tend to be located near the active and ligand binding sites in human proteins, but not near the post translational modification sites. The APRs in human proteins are also preferentially found at heterotypic interfaces rather than homotypic ones. Interestingly, this survey reveals that APRs play multiple, often opposing, roles in the human protein sequence‐structure‐function relationships. Insights gained from this work have several interesting implications towards novel drug discovery and development. Proteins 2017; 85:1099–1118. © 2017 Wiley Periodicals, Inc.  相似文献   
5.
To monitor and evaluate potential risks to birds’ health, invertebrate species that have been used as live food items had their body contents searched for endoparasites. The contents of approximately 10,000 invertebrates were analyzed. A principal component analysis was performed to study the relationship between the presence/absence of endoparasites and the characteristics of the invertebrates. In most of them, including the species preferred by birds such as caterpillars, waxworms, mealworms, most grasshoppers, and spiders, no organism was identified. Such findings suggest a low potential for parasite transmission associated with its consumption by birds. Although they had unknown or even unlikely implications for the birds’ health, gregarines, oxyurides Leidynema sp., and digenetic trematodes Monolecithotrema sp. were found in samples from woodlice, cockroaches, and centipedes, respectively. The only avian parasites observed in this study were Heterakis gallinarum in samples from earthworms and Acuaria spiralis from woodlice. Suggestively, soil invertebrates showed a higher prevalence of endoparasites and may represent a higher potential risk in comparison to the other categories of invertebrates sampled herein. Detritivory and collected origin were also explanatory variables related to the presence of endoparasites in the current study.  相似文献   
6.
Artificial immune recognition system (AIRS) classification algorithm, which has an important place among classification algorithms in the field of artificial immune systems, has showed an effective and intriguing performance on the problems it was applied. AIRS was previously applied to some medical classification problems including breast cancer, Cleveland heart disease, diabetes and it obtained very satisfactory results. So, AIRS proved to be an efficient artificial intelligence technique in medical field. In this study, the resource allocation mechanism of AIRS was changed with a new one determined by fuzzy-logic. This system, named as fuzzy-AIRS was used as a classifier in the diagnosis of lymph diseases, which is of great importance in medicine. The classifications of lymph diseases dataset taken from University of California at Irvine (UCI) Machine Learning Repository were done using 10-fold cross-validation method. Reached classification accuracies were evaluated by comparing them with reported classifiers in UCI web site in addition to other systems that are applied to the related problems. Also, the obtained classification performances were compared with AIRS with regard to the classification accuracy, number of resources and classification time. While only AIRS algorithm obtained 83.138% classification accuracy, fuzzy-AIRS classified the lymph diseases dataset with 90.00% accuracy. For lymph diseases dataset, fuzzy-AIRS obtained the highest classification accuracy according to the UCI web site. Beside of this success, fuzzy-AIRS gained an important advantage over the AIRS by means of classification time. By reducing classification time as well as obtaining high classification accuracies in the applied datasets, fuzzy-AIRS classifier proved that it could be used as an effective classifier for medical problems.  相似文献   
7.
8.
Emerging infectious diseases threaten a wide diversity of animals, and important questions remain concerning disease emergence in socially structured populations. We developed a spatially explicit simulation model to investigate whether—and under what conditions—disease-related mortality can impact rates of pathogen spread in populations of polygynous groups. Specifically, we investigated whether pathogen-mediated dispersal (PMD) can occur when females disperse after the resident male dies from disease, thus carrying infections to new groups. We also examined the effects of incubation period and virulence, host mortality and rates of background dispersal, and we used the model to investigate the spread of the virus responsible for Ebola hemorrhagic fever, which currently is devastating African ape populations. Output was analyzed using regression trees, which enable exploration of hierarchical and non-linear relationships. Analyses revealed that the incidence of disease in single-male (polygynous) groups was significantly greater for those groups containing an average of more than six females, while the total number of infected hosts in the population was most sensitive to the number of females per group. Thus, as expected, PMD occurs in polygynous groups and its effects increase as harem size (the number of females) increases. Simulation output further indicated that population-level effects of Ebola are likely to differ among multi-male–multi-female chimpanzees and polygynous gorillas, with larger overall numbers of chimpanzees infected, but more gorilla groups becoming infected due to increased dispersal when the resident male dies. Collectively, our results highlight the importance of social system on the spread of disease in wild mammals.  相似文献   
9.
MPV17 is an integral inner mitochondrial membrane protein, whose loss-of-function is linked to the hepatocerebral form of the mitochondrial-DNA-depletion syndrome, leading to a tissue-specific reduction of mitochondrial DNA and organ failure in infants. Several disease-causing mutations in MPV17 have been identified and earlier studies with reconstituted protein suggest that MPV17 forms a high conductivity channel in the membrane. However, the molecular and structural basis of the MPV17 functionality remain only poorly understood. In order to make MPV17 accessible to high-resolution structural studies, we here present an efficient protocol for its high-level production in E. coli and refolding into detergent micelles. Using biophysical and NMR methods, we show that refolded MPV17 in detergent micelles adopts a compact structure consisting of six membrane-embedded α-helices. Furthermore, we demonstrate that MPV17 forms oligomers in a lipid bilayer that are further stabilized by disulfide-bridges. In line with these findings, MPV17 could only be inserted into lipid nanodiscs of 8–12 nm in diameter if intrinsic cysteines were either removed by mutagenesis or blocked by chemical modification. Using this nanodisc reconstitution approach, we could show that disease-linked mutations in MPV17 abolish its oligomerization properties in the membrane. These data suggest that, induced by oxidative stress, MPV17 can alter its oligomeric state from a properly folded monomer to a disulfide-stabilized oligomeric pore which might be required for the transport of metabolic DNA precursors into the mitochondrial matrix to compensate for the damage caused by reactive oxygen species.  相似文献   
10.
Determination of the ratios of natural stable isotopes (13C/12C and 15N/14N) in unfed Ixodes ricinus nymphs and adults, which, in their previous stage, fed on captive wild rodents (Apodemus sylvaticus and Myodes glareolus), wild birds (Parus major and Cyanistes caeruleus) or domestic ruminants (Ovis aries and Bos taurus), demonstrated that it is possible to identify each host category with confidence. First, the tick–blood spacing, which is the difference between values obtained from ticks and the blood of hosts that they had fed on in the previous stage, was consistent (152 spacings investigated from 15 host individuals in total). Second, potential confounding factors (tick age and sex) did not affect the discriminatory power of the isotope patterns, nor did different rearing conditions (room temperature vs. 4 °C) or the duration of development (maximum of 430 days). The findings that the tick–blood isotope spacings, across a diverse range of hosts, were similar and predictable, and that confounders had little or no effect on this, strongly support the usage of the isotope approach. Because each of the host categories has a different role in the population dynamics of I. ricinus and in tick‐borne pathogen ecology, the method described here has great potential for the clarification of tick and tick‐borne pathogen ecology in the field.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号