首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8021篇
  免费   1240篇
  国内免费   841篇
  2024年   8篇
  2023年   268篇
  2022年   96篇
  2021年   281篇
  2020年   434篇
  2019年   514篇
  2018年   399篇
  2017年   435篇
  2016年   424篇
  2015年   448篇
  2014年   426篇
  2013年   536篇
  2012年   331篇
  2011年   348篇
  2010年   292篇
  2009年   424篇
  2008年   445篇
  2007年   430篇
  2006年   351篇
  2005年   325篇
  2004年   256篇
  2003年   234篇
  2002年   216篇
  2001年   237篇
  2000年   208篇
  1999年   197篇
  1998年   174篇
  1997年   126篇
  1996年   141篇
  1995年   114篇
  1994年   102篇
  1993年   113篇
  1992年   93篇
  1991年   92篇
  1990年   75篇
  1989年   79篇
  1988年   42篇
  1987年   46篇
  1986年   59篇
  1985年   54篇
  1984年   50篇
  1983年   15篇
  1982年   34篇
  1981年   27篇
  1980年   22篇
  1979年   35篇
  1978年   19篇
  1977年   11篇
  1976年   7篇
  1974年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
To preserve biodiversity, identifying at‐risk populations and developing conservation plans to mitigate the effects of human‐induced rapid environmental change (HIREC) are essential. Changes in diet, especially for food‐limited species, can aid in detecting populations being impacted by HIREC, and characterizing the quality, abundance, and temporal and spatial consistency of newly consumed food items may provide insight concerning the likelihood of a species persisting in a changing environment. We used Wood Storks (Mycteria americana) nesting in the Florida Everglades as a model system to study the possible effects of HIREC on a food‐limited population. We compared the diets of Wood Storks in 2013 and 2014 with those reported during the 1970s before major anthropogenic activities affected the Everglades system and prey availability. Wood Storks in our study consumed more large‐bodied sunfish species (Lepomis spp.), fewer native marsh fishes, and more non‐native fish species than during the 1970s. Large sunfish and non‐native fish are relatively rare in the drying pools of Everglades marshes where storks traditionally forage, suggesting that Wood Storks may be using novel foraging habitats such as created wetlands (i.e., canals and stormwater ponds). Although created wetlands have long hydroperiods conducive to maintaining large‐bodied fishes and could provide alternative foraging habitat when prey availability is reduced in natural marshes, additional studies are needed to determine the extent to which these wetlands are used by Wood Storks and, importantly, the quality of prey items potentially available to foraging Wood Storks in created wetlands.  相似文献   
3.
At fine spatial scales, savanna‐rainforest‐grassland boundary dynamics are thought to be mediated by the interplay between fire, vegetation and soil feedbacks. These processes were investigated by quantifying tree species composition, the light environment, quantities and flammability of fuels, bark thickness, and soil conditions across stable and dynamic rainforest boundaries that adjoin grassland and eucalypt savanna in the highlands of the Bunya Mountains, southeast Queensland, Australia. The size class distribution of savanna and rainforest stems was indicative of the encroachment of rainforest species into savanna and grassland. Increasing dominance of rainforest trees corresponds to an increase in woody canopy cover, the dominance of litter fuels (woody debris and leaf), and decline in grass occurrence. There is marked difference in litter and grass fuel flammability and this result is largely an influence of strongly dissimilar fuel bulk densities. Relative bark thickness, a measure of stem fire resistance, was found to be generally greater in savanna species when compared to that of rainforest species, with notable exceptions being the conifers Araucaria bidwillii and Araucaria cunninghamii. A transect study of soil nutrients across one dynamic rainforest – grassland boundary indicated the mass of carbon and nitrogen, but not phosphorus, increased across the successional gradient. Soil carbon turnover time is shortest in stable rainforest, intermediate in dynamic rainforest and longest in grassland highlighting nutrient cycling differentiation. We conclude that the general absence of fire in the Bunya Mountains, due to a divergence from traditional Aboriginal burning practices, has allowed for the encroachment of fire‐sensitive rainforest species into the flammable biomes of this landscape. Rainforest invasion is likely to have reduced fire risk via changes to fuel composition and microclimatic conditions, and this feedback will be reinforced by altered nutrient cycling. The mechanics of the feedbacks here identified are discussed in terms of landscape change theory.  相似文献   
4.
In the Northern Hemisphere, the surface of south-facing slopes orients toward the sun and thus receives a greater duration and intensity of solar irradiation, resulting in a relatively warmer, drier microclimate and seasonal environmental extremes. This creates potentially detrimental conditions for evergreen plants which must endure the full gamut of conditions. I hypothesize that (1) increased southerly aspect will correlate negatively with evergreen understory plant distributions; (2) derived environmental variables (summer and winter light and heat load) will predict variance in evergreen distributions as well as topographic position (aspect, slope, and elevation) and (3) winter light will best predict evergreen understory plant distributions. In order to test these hypotheses, survey data were collected characterizing 10 evergreen understory herb distributions (presence, abundance, and reproduction) as well as the corresponding topographical information across north- and south-facing slopes in the North Carolina mountains and Georgia piedmont. The best predictive models were selected using AIC, and Bayesian hierarchical generalized linear models were used to estimate the strength of the retained coefficients. As predicted, evergreen understory herbs occurred and reproduced less on south-facing than north-facing slopes, though slope and elevation also had robust predictive power, and both discriminated well between evergreen species. While the landscape variables explained where the plants occurred, winter light and heat load provided the best explanation why they were there. Evergreen plants likely are limited on south-facing slopes by low soil moisture combined with high temperatures in summer and high irradiance combined with lower temperatures in winter. The robust negative response of the understory evergreen herbs to increased winter light also suggested that the winter rather than the summer (or growing season) environment provided the best predictive power for understory evergreen distributions, which has substantive implications for predicting responses to global climate change.  相似文献   
5.
This paper deal with a model of optimal foraging in a habitat with arbitrary food distribution. It takes into account an arbitrary risk cost related to the distance to the animal's nest. Food acquisition and risk cost are accounted for in common units of fitness. The resulting problem is solved in the context of Calculus of Variations. The optimal duration of absence from the nest and the optimal spatial allocation of foraging time are obtained: the optimal strategy leads to separate the habitat into a region to exploit and a region to ignore. The definition of these two distinct regions depends on the relative importance of risk and food availability. With realistic risk costs, the resulting strategy indicates a highly selective behaviour when far from the nest, as observed in field studies. The model is also extended to take account of the need of returning to the nest to guard it or to feed the young.  相似文献   
6.
In Mediterranean environments, gully erosion is responsible for large soil losses. It has since long been recognized that slopes under vegetation are much more resistant to soil erosion processes compared to bare soils and improve slope stability. Planting or preserving vegetation in areas vulnerable to erosion is therefore considered to be a very effective soil erosion control measure. Re-vegetation strategies for erosion control rely in most cases on the effects of the above-ground biomass in reducing water erosion rates, whereas the role of the below-ground biomass is often neglected or underestimated. While the above-ground biomass can temporally disappear in semi-arid environments, roots may still be present underground and play an important role in protecting the topsoil from being eroded. In order to evaluate the potential of plant species growing in Mediterranean environments to prevent shallow mass movements on gully or terrace walls, the root reinforcement effect of 25 typical Mediterranean matorral species (i.e. shrubs, grasses herbs, small trees) was assessed, using the simple perpendicular model of Wu et al. (Can Geotech J 16:19–33, 1979). As little information is available on Mediterranean plant root characteristics, root distribution data were collected in SE-Spain and root tensile strength tests were conducted in the laboratory. The power root tensile strength–root diameter relationships depend on plant species. The results show that the shrubs Salsola genistoides Juss. Ex Poir. and Atriplex halimus L. have the strongest roots, followed by the grass Brachypodium retusum (Pers.) Beauv. The shrubs Nerium oleander L. and the grass Avenula bromoides (Gouan) H. Scholz have the weakest roots in tension. Root area ratio for the 0–0.1 m topsoil ranges from 0.08% for the grass Piptatherum miliaceum (L.) Coss to 0.8% for the tree Tamarix canariensis Willd. The rush Juncus acutus L. provides the maximum soil reinforcement to the topsoil by its roots (i.e. 304 kPa). Grasses also increase soil shear strength significantly (up to 244 kPa in the 0–0.1 m topsoil for Brachypodium retusum (Pers.) Beauv.). The shrubs Retama sphaerocarpa (L.) Boiss. and Anthyllis cytisoides L. are increasing soil shear strength to a large extent as well (up to 134 and 160 kPa respectively in the 0–0.10 m topsoil). Whereas grasses and the rush Juncus acutus L. increase soil shear strength in the topsoil (0–0.10 m) to a large extent, the shrubs Anthyllis cytisoides (L.), Retama sphaerocarpa (L.) Boiss., Salsola genistoides Juss. Ex Poir. and Atriplex halimus L. strongly reinforce the soil to a greater depth (0–0.5 m). As other studies reported that Wu’s model overestimates root cohesion values, reported root cohesion values in this study are maximum values. Nevertheless, the calculated cohesion values are used to rank species according to their potential to reinforce the soil.  相似文献   
7.
In order to realize the projected market potential of nanotechnology, the environmental, health, and safety (EHS) uncertainties posed by a nano‐product (i.e., a nanotechnology‐enabled product) need to be characterized through the identification of risks and opportunities in early stages of product development. We present a methodology to identify risks from nano‐products using a scenario analysis approach that allows for expert elicitation on a set of preidentified use and disposal scenarios and what we have labeled “risk triggers” to obtain scores on their likelihood of occurrence and severity. Use and disposal scenarios describe product life‐cycle stages that could result in risk attributed to the nano‐product, whereas risk triggers are particular to nanoparticle properties. These are potential risks, as the risk assessment community is currently debating the specific risks attributed to nanotechnology. Through such a framework, our goal is to identify which products pose greater risks, where these risks occur in the product life cycle, and the impacts of these environmental risks on society. The comparison of risk triggers across nano‐products allows relative risk ranking on axes of exposure‐ and hazard‐related risk triggers. For the specific case of air fresheners, areas of acute risks resulted from bioavailability of nanoparticles in air release and water entrainment exposure scenarios; catalytic activity of nanoparticles in inhalation and air release exposure scenarios; the harmful effects due to the antibacterial property on useful bacteria particularly in susceptible populations; and, finally, risks from the lack of nanoparticle coating stability in air release scenarios.  相似文献   
8.
9.
Birds play an important role in studies addressing the diversity and species richness of tropical ecosystems, but because of the poor avian fossil record in all extant tropical regions, a temporal perspective is mainly provided by divergence dates derived from calibrated molecular analyses. Tropical ecosystems were, however, widespread in the Northern Hemisphere during the early Cenozoic, and the early Eocene German fossil site Messel in particular has yielded a rich avian fossil record. The Messel avifauna is characterized by a considerable number of flightless birds, as well as a high diversity of aerial insectivores and the absence of large arboreal birds. With about 70 currently known species in 42 named genus‐level and at least 39 family‐level taxa, it approaches extant tropical biotas in terms of species richness and taxonomic diversity. With regard to its taxonomic composition and presumed ecological characteristics, the Messel avifauna is more similar to the Neotropics, Madagascar, and New Guinea than to tropical forests in continental Africa and Asia. Because the former regions were geographically isolated during most of the Cenozoic, their characteristics may be due to the absence of biotic factors, especially those related to the diversification of placental mammals, which impacted tropical avifaunas in Africa and Asia. The crown groups of most avian taxa that already existed in early Eocene forests are species‐poor. This does not support the hypothesis that the antiquity of tropical ecosystems is key to the diversity of tropical avifaunas, and suggests that high diversification rates may be of greater significance.  相似文献   
10.
In alpine regions worldwide, climate change is dramatically altering ecosystems and affecting biodiversity in many ways. For streams, receding alpine glaciers and snowfields, paired with altered precipitation regimes, are driving shifts in hydrology, species distributions, basal resources, and threatening the very existence of some habitats and biota. Alpine streams harbour substantial species and genetic diversity due to significant habitat insularity and environmental heterogeneity. Climate change is expected to affect alpine stream biodiversity across many levels of biological resolution from micro‐ to macroscopic organisms and genes to communities. Herein, we describe the current state of alpine stream biology from an organism‐focused perspective. We begin by reviewing seven standard and emerging approaches that combine to form the current state of the discipline. We follow with a call for increased synthesis across existing approaches to improve understanding of how these imperiled ecosystems are responding to rapid environmental change. We then take a forward‐looking viewpoint on how alpine stream biologists can make better use of existing data sets through temporal comparisons, integrate remote sensing and geographic information system (GIS) technologies, and apply genomic tools to refine knowledge of underlying evolutionary processes. We conclude with comments about the future of biodiversity conservation in alpine streams to confront the daunting challenge of mitigating the effects of rapid environmental change in these sentinel ecosystems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号