首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3924篇
  免费   376篇
  国内免费   101篇
  2023年   34篇
  2022年   52篇
  2021年   52篇
  2020年   102篇
  2019年   125篇
  2018年   145篇
  2017年   124篇
  2016年   119篇
  2015年   129篇
  2014年   183篇
  2013年   381篇
  2012年   153篇
  2011年   163篇
  2010年   129篇
  2009年   213篇
  2008年   206篇
  2007年   244篇
  2006年   219篇
  2005年   199篇
  2004年   177篇
  2003年   159篇
  2002年   147篇
  2001年   100篇
  2000年   71篇
  1999年   68篇
  1998年   72篇
  1997年   68篇
  1996年   38篇
  1995年   59篇
  1994年   63篇
  1993年   43篇
  1992年   45篇
  1991年   31篇
  1990年   28篇
  1989年   25篇
  1988年   25篇
  1987年   18篇
  1986年   26篇
  1985年   28篇
  1984年   32篇
  1983年   19篇
  1982年   21篇
  1981年   12篇
  1980年   15篇
  1979年   10篇
  1978年   8篇
  1977年   4篇
  1976年   6篇
  1973年   2篇
  1971年   2篇
排序方式: 共有4401条查询结果,搜索用时 15 毫秒
1.
Axonal regeneration after injury to the CNS is hampered by myelin‐derived inhibitors, such as Nogo‐A. Natural products, such as green tea, which are neuroprotective and safe for long‐term therapy, would complement ongoing various pharmacological approaches. In this study, using nerve growth factor‐differentiated neuronal‐like Neuroscreen‐1 cells, we show that extremely low concentrations of unfractionated green tea polyphenol mixture (GTPP) and its active ingredient, epigallocatechin‐3‐gallate (EGCG), prevent both the neurite outgrowth‐inhibiting activity and growth cone‐collapsing activity of Nogo‐66 (C‐terminal domain of Nogo‐A). Furthermore, a synergistic interaction was observed among GTPP constituents. This preventive effect was dependent on 67‐kDa laminin receptor (67LR) to which EGCG binds with high affinity. The antioxidants N‐acetylcysteine and cell‐permeable catalase abolished this preventive effect of GTPP and EGCG, suggesting the involvement of sublethal levels of H2O2 in this process. Accordingly, exogenous sublethal concentrations of H2O2, added as a bolus dose (5 μM) or more effectively through a steady‐state generation (1–2 μM), mimicked GTPP in counteracting the action of Nogo‐66. Exogenous H2O2 mediated this action by bypassing the requirement of 67LR. Taken together, these results show for the first time that GTPP and EGCG, acting through 67LR and elevating intracellular sublethal levels of H2O2, inhibit the antineuritogenic action of Nogo‐A.

  相似文献   

2.
Reactive oxygen species (ROS) including hydrogen peroxide (H2O2) exhibit both pro-survival and pro-death signaling in leukemic cells. We examined the effect of exogenous H2O2 on Fas ligand (FasL) -induced apoptosis in Jurkat cells. H2O2 applied prior to (pre-conditioning) and during (post-conditioning) FasL stimulation attenuated early apoptosis through activation of EKR5. H2O2 increased the activated caspase-8 sequestered in the mitochondria thereby decreasing cell death through the extrinsic apoptotic pathway. In addition, inhibition of a protein tyrosine phosphatase likely explains the post-conditioning requirement for H2O2. Given that chemotherapeutic agents used for the treatment of acute lymphoblastic leukemia are thought to work partly through production of ROS, a simultaneous inhibition of the ERK5 pathway may abrogate the ROS-initiated pro-survival signaling for an enhanced cell kill.  相似文献   
3.
Hydrogen sulfide (H2S) is an important gaseous molecule in various plant developmental processes and plant stress responses. In this study, the transgenic Arabidopsis thaliana plants with modulated exp...  相似文献   
4.
Effective chemotherapy for solid cancers is challenging due to a limitation in permeation that prevents anticancer drugs from reaching the center of the tumor, therefore unable to limit cancer cell growth. To circumvent this issue, we planned to apply the drugs directly at the center by first collapsing the outer structure. For this, we focused on cell–cell communication (CCC) between N-glycans and proteins at the tumor cell surface. Mature N-glycans establish CCC; however, CCC is hindered when numerous immature N-glycans are present at the cell surface. Inhibition of Golgi mannosidases (GMs) results in the transport of immature N-glycans to the cell surface. This can be employed to disrupt CCC. Here, we describe the molecular design and synthesis of an improved GM inhibitor with a non-sugar mimic scaffold that was screened from a compound library. The synthesized compounds were tested for enzyme inhibition ability and inhibition of spheroid formation using cell-based methods. Most of the compounds designed and synthesized exhibited GM inhibition at the cellular level. Of those, AR524 had higher inhibitory activity than a known GM inhibitor, kifunensine. Moreover, AR524 inhibited spheroid formation of human malignant cells at low concentration (10 µM), based on the disruption of CCC by GM inhibition.  相似文献   
5.
Concomitant generation of reactive oxygen species during tissue inflammation has been recognised as a major factor for the development and the maintenance of hyperalgesia, out of which H2O2 is the major player. However, molecular mechanism of H2O2 induced hyperalgesia is still obscure. The aim of present study is to analyse the mechanism of H2O2-induced hyperalgesia in rats. Intraplantar injection of H2O2 (5, 10 and 20 µmoles/paw) induced a significant thermal hyperalgesia in the hind paw, confirmed by increased c-Fos activity in dorsal horn of spinal cord. Onset of hyperalgesia was prior to development of oxidative stress and inflammation. Rapid increase in phosphorylation of extracellular signal regulated kinase (ERK) was observed in neurons of dorsal root ganglia after 20?min of H2O2 (10 µmoles/paw) administration, which gradually returned towards normal level within 24?h, following the pattern of thermal hyperalgesia. The expression of TNFR1 followed the same pattern and colocalised with pERK. ERK phosphorylation was observed in NF-200-positive and -negative neurons, indicating the involvement of ERK in C-fibres as well as in A-fibres. Intrathecal preadministration of Src family kinases (SFKs) inhibitor (PP1) and MEK inhibitor (PD98059) prevented H2O2 induced augmentation of ERK phosphorylation and thermal hyperalgesia. Pretreatment of protein tyrosine phosphatases (PTPs) inhibitor (sodium orthovanadate) also diminished hyperalgesia, although it further increased ERK phosphorylation. Combination of orthovanadate with PP1 or PD98059 did not exhibit synergistic antihyperalgesic effect. The results demonstrate SFKs-mediated ERK activation and increased TNFR1 expression in nociceptive neurons during H2O2 induced hyperalgesia. However, the role of PTPs in hyperalgesic behaviour needs further molecular analysis.  相似文献   
6.
Here an all‐purpose fibrous electrode based on MoS2 is demonstrated, which can be employed for versatile energy harvesting and storage applications. In this coaxial electrode, ultrathin MoS2 nanofilms are grown on TiO2 nanoparticles coated carbon fiber. The high electrochemical activity of MoS2 and good conductivity of carbon fiber synergistically lead to the remarkable performances of this novel composite electrode in fibrous dye‐sensitized solar cells (showing a record‐breaking conversion efficiency of 9.5%) and high‐capacity fibrous supercapacitors. Furthermore, a self‐powering energy fiber is fabricated by combining a fibrous dye‐sensitized solar cell and a fibrous supercapacitor into a single device, showing very fast charging capability (charging in 7 s under AM1.5G solar illumination) and an overall photochemical‐electricity energy conversion efficiency as high as 1.8%. In addition, this wire‐shaped electrode can also be used for fibrous Li‐ion batteries and electrocatalytic hydrogen evolution reactions. These applications indicate that the MoS2‐based all‐purpose fibrous electrode has great potential for the construction of high‐performance flexible and wearable energy devices.  相似文献   
7.
By employing in situ reduction of metal precursor and metal‐assisted carbon etching process, this study achieves a series of ultrafine transition metal‐based nanoparticles (Ni–Fe, Ni–Mo) embedded in N‐doped carbon, which are found efficient catalysts for electrolytic water splitting. The as‐prepared hybrid materials demonstrate outstanding catalytic activities as non‐noble metal electrodes rendered by the synergistic effect of bimetal elements and N‐dopants, the improved electrical conductivity, and hydrophilism. Ni/Mo2C@N‐doped porous carbon (NiMo‐polyvinylpyrrolidone (PVP)) and NiFe@N‐doped carbon (NiFe‐PVP) produce low overpotentials of 130 and 297 mV at a current density of 10 mA cm?2 as catalysts for hydrogen evolution reaction and oxygen evolution reaction, respectively. In addition, these binder‐free electrodes show long‐term stability. Overall water splitting is also demonstrated based on the couple of NiMo‐PVP||NiFe‐PVP catalyzer. This represents a simple and effective synthesis method toward a new type of nanometal–carbon hybrid electrodes.  相似文献   
8.
9.
Despite high level of homology among non-receptor tyrosine kinases, different kinase families employ a diverse array of regulatory mechanisms. For example, the catalytic kinase domains of the Tec family kinases are inactive without assembly of the adjacent regulatory domains, whereas the Src kinase domains are autoinhibited by the assembly of similar adjacent regulatory domains. Using molecular dynamics simulations, biochemical assays, and biophysical approaches, we have uncovered an isoleucine residue in the kinase domain of the Tec family member Btk that, when mutated to the closely related leucine, leads to a shift in the conformational equilibrium of the kinase domain toward the active state. The single amino acid mutation results in measureable catalytic activity for the Btk kinase domain in the absence of the regulatory domains. We suggest that this isoleucine side chain in the Tec family kinases acts as a “wedge” that restricts the conformational space available to key regions in the kinase domain, preventing activation until the kinase domain associates with its regulatory subunits and overcomes the energetic barrier to activation imposed by the isoleucine side chain.  相似文献   
10.
Rhodanese is a component of the mitochondrial H2S oxidation pathway. Rhodanese catalyzes the transfer of sulfane sulfur from glutathione persulfide (GSSH) to sulfite generating thiosulfate and from thiosulfate to cyanide generating thiocyanate. Two polymorphic variations have been identified in the rhodanese coding sequence in the French Caucasian population. The first, 306A→C, has an allelic frequency of 1% and results in an E102D substitution in the encoded protein. The second polymorphism, 853C→G, has an allelic frequency of 5% and leads to a P285A substitution. In this study, we have examined differences in the stability between wild-type rhodanese and the E102D and P285A variants and in the kinetics of the sulfur transfer reactions. The Asp-102 and Ala-285 variants are more stable than wild-type rhodanese and exhibit kcat/Km,CN values that are 17- and 1.6-fold higher, respectively. All three rhodanese forms preferentially catalyze sulfur transfer from GSSH to sulfite, generating thiosulfate and glutathione. The kcat/Km,sulfite values for the variants in the sulfur transfer reaction from GSSH to sulfite were 1.6- (Asp-102) and 4-fold (Ala-285) lower than for wild-type rhodanese, whereas the kcat/Km,GSSH values were similar for all three enzymes. Thiosulfate-dependent H2S production in murine liver lysate is low, consistent with a role for rhodanese in sulfide oxidation. Our studies show that polymorphic variations that are distant from the active site differentially modulate the sulfurtransferase activity of human rhodanese to cyanide versus sulfite and might be important in differences in susceptibility to diseases where rhodanese dysfunction has been implicated, e.g. inflammatory bowel diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号