首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   311篇
  国内免费   1篇
  完全免费   66篇
  2021年   1篇
  2020年   7篇
  2019年   14篇
  2018年   21篇
  2017年   25篇
  2016年   20篇
  2015年   13篇
  2014年   24篇
  2013年   25篇
  2012年   25篇
  2011年   38篇
  2010年   21篇
  2009年   27篇
  2008年   29篇
  2007年   25篇
  2006年   10篇
  2005年   17篇
  2004年   4篇
  2003年   7篇
  2002年   6篇
  2001年   1篇
  2000年   4篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
排序方式: 共有378条查询结果,搜索用时 31 毫秒
1.
The cells in bone grow on a composite matrix made up of mineral and organic (mainly type-I collagen) components. In this study, anorganic bone mineral (ABM) particles were coated with a cell-binding domain of type-I collagen (P-15 peptide) to mimic the bone matrix components and suspended in injectable hyaluronate (Hy) hydrogels. The ABM/P-15/Hy was compared to ABM/Hy-the same matrix without P-15 peptide. Osteoblast-like HOS cells migrated through the hydrogels around ABM/P-15 or ABM particles; however, more cells adhered to ABM/P-15/Hy particles, and the cells formed better surface coverage and had more stress fibers on ABM/P-15/Hy. HOS cells cultured on ABM/P-15/Hy had increased osteogenic gene expression for alkaline phosphatase and bone morphogenetic proteins, and deposited more mineralized matrix. Studies with two different hydrogels (carboxymethylcellulose and sodium alginate) showed similar enhanced cell attachment and mineralization. The studies suggest that the ABM/P-15 in hydrogels can be used as an injectable biomimetic matrix to facilitate bone repair.  相似文献
2.
Sap salinity effects on xylem conductivity in two mangrove species   总被引:5,自引:0,他引:5  
Xylem sap salinity and conductivity were examined in two mangrove ecosystem tree species . For Avicennia germinans , extracted xylem sap osmotic potentials ranged from −0.24 to −1.36 MPa versus −0.14 to −0.56 MPa for Conocarpus erectus. Xylem sap of Conocarpus did not vary in osmotic potential between sites nor between predawn and midday. In Avicennia , values were more negative at midday than predawn, and also more negative at hypersaline than hyposaline sites. After removing embolisms, specific conductivity ( K s) was measured as a function of salinity of the artificial xylem sap perfusion. For both species the lowest K s values, about 70% of the maximum K s, were obtained when stems were perfused with deionized water (0 m m ; 0.0 MPa) or with a 557-m m saline solution (−2.4 MPa). Higher K s values were obtained in the range from −0.3 to −1.2 MPa, with a peak at −0.82 ± 0.08 MPa for Avicennia and −0.75 ± 0.08 MPa for Conocarpus . The variations in K s values with minima both at very low and very high salt concentrations were consistent with published results for swelling and shrinking of synthetic hydrogels, suggesting native hydrogels in pit membranes of vessels could help regulate conductivity.  相似文献
3.
Novel superabsorbent hydrogels were manufactured using chemically modified cashew gum (CGMA) and acrylamide (AAm) as reactants. The route for the synthesis was feasible due to the incorporation of glycidyl methacrylate (GMA) into structure of cashew gum (CG) to form the cashew gum-methacrylated (CGMA), in an appropriate mixture water-DMSO, as solvent, and using TEMED as catalyst. Thereafter, the CGMA was copolymerized with AAm yielding (CGMA-co-AAm) hydrogels. The main characteristics of raw and the modified materials are reported in this paper. 13C NMR, 1H NMR and FTIR spectroscopies confirmed the incorporation of vinyl groups, from GMA, into CG structure. By the spectrophotometry analyses, it was found that, ca. 82% of GMA was incorporated to the CG after 24 h of reaction. The cross-linking of CGMA or co-polymerization of CGMA with acrylamide leads to a hydrogel formation. Their gelation was characterized by FT-IR analysis. Alkaline hydrolysis at 40 °C for 3 and 4.5 h increased the water uptake (WU) capacity. Hydrolyzed CGMA-co-AAm hydrogels present higher values of WU (up to 1500) and may be classified as water superabsorbent material. Applications in agriculture, as soil conditioner, and in biomedical field, as biomaterial (scaffold) are being investigated.  相似文献
4.
Wounds in adults and fetuses differ in their healing ability with respect to scar formation. In adults, wounds lacking the epidermis exhibit excess collagen production and scar formation. Fibroblasts synthesize and deposit a collagen rich extracellular matrix. The early migration and proliferation of fibroblasts in the wound area is implicated in wound scarring. We have synthesized a hydrogel from chitosan-polyvinyl pyrrolidone (PVP) and examined its effect on fibroblast growth modulation in vitro. The hydrogel was found to be hydrophilic as seen from its octane contact angle (141.2+/-0.37 degrees). The hydrogel was non-toxic and biocompatible with fibroblasts and epithelial cells as confirmed by the 3(4,5-dimethylthiazolyl-2)-2, 5-diphenyl tetrazolium bromide (MTT) as-say. It showed dual properties by supporting growth of epithelial cells (SiHa) and selectively inhibiting fibro-blast (NIH3T3) growth. Growth inhibition of fibroblasts resulted from their inability to attach on to the hydrogel. These findings are supported by image analysis, which revealed a significant difference (P<0.05) between the number of fibroblasts attached to the hydrogel in tissue culture as compared to tissue culture treated polystyrene (TCPS) controls. However, no significant difference was observed (P>0.05) in the number of epithelial (SiHa) cells attached on to the hydrogel as compared to the TCPS control. Although in vivo experiments are awaited, these findings point to the possible use of chitosan-PVP hydrogels in wound-management.  相似文献
5.
Thermosensitive hydrogels that are triggered by changes in environmental temperature thus resulting in in situ hydrogel formation have recently attracted the attention of many investigators for biomedical applications. In the current work, the thermosensitive hydrogel was prepared through the mixture of chitosan (CS), poly(vinyl alcohol) (PVA) and sodium bicarbonate. The mixture was liquid aqueous solutions at low temperature (about 4 °C), but a gel under physiological conditions. The hydrogel was characterized by FTIR, swelling and rheological analysis. The effect of hydrogel composition and temperature on both the gel process and the gel strength was investigated from which possible hydrogel formation mechanisms were inferred. In addition, the hydrogel interior morphology as well as porosity of structure was evaluated by scanning electron microscopy (SEM). The potential of the hydrogels as vehicles for delivering bovine serum albumin (BSA) were also examined. In this study, the physically crosslinked chitosan/PVA gel was prepared under mild conditions without organic solvent, high temperature or harsh pH. The viscoelastic properties, as investigated rheologically, indicate that the gel had good mechanical strength. The gel formed implants in situ in response to temperature change, from low temperature (about 4 °C) to body temperature, which was very suitable for local and sustained delivery of proteins, cell encapsulation and tissue engineering.  相似文献
6.
Guar gum/poly(acrylic acid) semi-interpenetrating polymer network (IPN) hydrogels have been prepared via free radical polymerization in the presence of a crosslinker of N,N′-methylene bisacrylamide (MBA). The kinetics of swelling and the water transport mechanism were studied as a function of the composition of the hydrogels and the pH of the swelling medium. Hydrogels showed enormous swelling in aqueous medium and displayed swelling characteristics, which were highly dependent on the chemical composition of the hydrogels and pH of the medium in which hydrogels were immersed (ionic strength I = 0.15 mol/L). The semi-INP hydrogels were characterized by evaluating various network parameters such as average molecular weight between crosslinks (Mc) crosslink density (ρ) and mesh size ξ.  相似文献
7.
Semi-interpenetrating polymer network (IPN) microspheres of acrylamide grafted on dextran (AAm-g-Dex) and chitosan (CS) were prepared by emulsion-crosslinking method using glutaraldehyde (GA) as a crosslinker. The grafting efficiency was found to be 94%. Acyclovir, an antiviral drug with limited water solubility, was successfully encapsulated into IPN microspheres by varying the ratio of AAm-g-Dex and CS, % drug loading and amount of GA. Microspheres were characterized by FT-IR spectroscopy to assess the formation of IPN structure and to confirm the absence of chemical interactions between drug, polymer and crosslinking agent. Particle size was measured using laser light scattering technique. Microspheres with average particle sizes in the range of 265–388 μm were obtained. Differential scanning calorimetry (DSC) and X-ray diffraction (X-RD) studies were performed to understand the crystalline nature of drug after encapsulation into IPN microspheres. Acyclovir encapsulation of up to 79.6% was achieved as measured by UV spectroscopy. Both equilibrium and dynamic swelling studies were performed in 0.1 N HCl. Diffusion coefficients (D) and diffusional exponents (n) for water transport were determined using an empirical equation. In vitro release studies indicated the dependence of drug release rates on both the extent of crosslinking and amount of AAm-g-Dex used in preparing microspheres; the slow release was extended up to 12 h. The release rates were fitted to an empirical equation to compute the diffusional exponent (n), which indicated non-Fickian trend for the release of acyclovir.  相似文献
8.
高分子药用控释材料研究进展   总被引:3,自引:0,他引:3  
本文综述了高分子药用控释材料的性能、分类及其应用;并介绍了其发展方向。  相似文献
9.
生物可降解嵌段共聚物在给药载体中的应用   总被引:3,自引:0,他引:3  
生物可降解嵌段聚合物因具有双亲性 ,靶向药物到特定部位等优点大大推动了作为给药载体系统的发展。本文综述了生物可降解嵌段聚合物在表面修饰、水凝胶、胶束、生物大分子载体系统中的应用  相似文献
10.
一种用于盐度测量的光纤传感器   总被引:3,自引:0,他引:3  
制作了智能水凝胶PDA—C12。根据凝胶的溶胀性质设计制作了一种盐度光纤传感器探头,并实测了在不同盐度溶液中的输出光强,可测范围达到了1.0mol/L以上,为在一般要求下的盐度测量提供了一种新的方法。  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号