首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   7篇
  国内免费   2篇
  2021年   1篇
  2020年   2篇
  2018年   6篇
  2017年   2篇
  2016年   3篇
  2013年   4篇
  2012年   4篇
  2011年   3篇
  2010年   1篇
  2009年   3篇
  2008年   2篇
  2007年   3篇
  2006年   4篇
  2005年   7篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   4篇
  1997年   3篇
  1996年   1篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1979年   3篇
  1978年   1篇
  1977年   4篇
  1976年   3篇
排序方式: 共有91条查询结果,搜索用时 15 毫秒
1.
  相似文献   
2.
Three axenic polar sea ice diatom cultures were subjected to a 30 day simulated summer-winter transition in which light and temperature were decreased and salinity was increased to mimic seasonal changes previously reported for ice-covered polar seas. The diatoms responded to these changes by a reduction in cellular metabolism as indicated by: 1) A decline in growth rate and photosynthetic rate; 2) a decrease in cellular ATP; and 3) the storage and subsequent utilization of endogenous carbon reserves. In addition, heterotrophic potential of the three clones increased by as much as 60-fold. In some cases, the decrease in light intensity characteristic of the onset of polar winter was alone sufficient to trigger these physiological changes.  相似文献   
3.
Functional features of Scenedesmus obliquus: wild type 276–6 strain (WT) and its two mutants reported as photosystem I‐deficient (mutant 56.80) and photosystem II‐deficient (mutant 57.80) were characterized. Algae were cultured aseptically under continuous light or in darkness on mineral bold basal medium (BBM), yeast extract‐enriched BBM and yeast extract to evaluate the physiology of algal cells under photoautotrophic, mixotrophic and heterotrophic conditions. Growth, superoxide dismutase activity and photosynthetic parameters, including polyphasic fluorescence rise during the first seconds of chlorophyll a illumination (OJIP), were analyzed to find relationships between the photosynthetic/respiratory activity of the cells, occurrence of oxidative stress and trophic conditions applied to PSs‐deficient algae. Despite the highest superoxide dismutase activity, indicating the presence of oxidative stress, mixotrophic conditions appeared to be optimal for S. obliquus WT and mutant strains kept in non‐aerated cultures. OJIP analysis indicated that in mutant 56.80 part of photosystem (PS) I was functional and in mutant 57.80 residual PS II activity was found.  相似文献   
4.
Amphora coffeaeformis (Ag.) Kütz. var. perpusilla (Grun.) Cleve took up glucose by an inducible transport system. The system was induced by d -fructose, d -mannose, as well as glucose. Some d -pentoses also induced a glucose uptake system but it may not be the same one as that induced by hexose. d -fructose, d -mannose and 2-deoxy-d -glucose inhibited 2 mM glucose uptake at equimolar concentration, but d -pentoses did not. The uptake system decayed in ca. 5 h in the absence of glucose. The half-saturation constant for uptake, K8 was ca. 0.1 mM glucose with a maximum uptake rate, Vmax= 0.4 nmol/106 cells-min?1.  相似文献   
5.
6.
Survival of the green alga Scenedesmus acuminatus Lagerh. in complete darkness was studied in axenic batch cultures at 7°C and 22°C for three months. The decrease in cell numbers was insensitive to temperature and slower than the loss of dry weight. However, the lag phase before cells began to lyse was more than twice as long at 7° C than at 22°C. The decline in cellular carbohydrates and proteins occurred in two phases. During the first 3-4 days, the decrease in cellular carbohydrate levels was significantly accelerated and temperature-sensitive. Pyrenoids disappeared within 5 days of darkness. Proteins showed 20-fold higher degradation rates at 22°C than at 7°C during the first 4 days. Thereafter, the rates of carbohydrate and protein decomposition were slow and temperature-independent. By contrast, lipids degraded only little at virtually constant and temperature-insensitive rates over the entire experimental period. After three months of dark incubation, about 40% of the remaining cells had retained their growth potential. However, the lag phase, after which cell division was resumed when exposed to light, increased with the duration of the previous dark period. The decrease in photo synthetic potential, which was more pronounced at 22° C than at 7° C, was apparent both in declining maximum assimilation numbers and maximum quantum yields. Cellular chlorophyll a concentrations in surviving cells decreased only slightly. We conclude that the primary means by which S. acuminatus survives extended dark periods is by reduction of catabolic reactions. This was suggested by the slow loss of cell weight. No evidence of significant heterotrophic acetate uptake was found. The initial temperature-dependence of most observed processes indicates that in natural environments chances for survival of algae are augmented by the prevailing low water temperatures.  相似文献   
7.
The unicellular green alga Haematococcus pluvialis has been exploited as a cell factory to produce the high‐value antioxidant astaxanthin for over two decades, due to its superior ability to synthesize astaxanthin under adverse culture conditions. However, slow vegetative growth under favorable culture conditions and cell deterioration or death under stress conditions (e.g., high light, nitrogen starvation) has limited the astaxanthin production. In this study, a new paradigm that integrated heterotrophic cultivation, acclimation of heterotrophically grown cells to specific light/nutrient regimes, followed by induction of astaxanthin accumulation under photoautotrophic conditions was developed. First, the environmental conditions such as pH, carbon source, nitrogen regime, and light intensity, were optimized to induce astaxanthin accumulation in the dark‐grown cells. Although moderate astaxanthin content (e.g., 1% of dry weight) and astaxanthin productivity (2.5 mg L?1 day?1) were obtained under the optimized conditions, a considerable number of cells died off when subjected to stress for astaxanthin induction. To minimize the susceptibility of dark‐grown cells to light stress, the algal cells were acclimated, prior to light induction of astaxanthin biosynthesis, under moderate illumination in the presence of nitrogen. Introduction of this strategy significantly reduced the cell mortality rate under high‐light and resulted in increased cellular astaxanthin content and astaxanthin productivity. The productivity of astaxanthin was further improved to 10.5 mg L?1 day?1 by implementation of such a strategy in a bubbling column photobioreactor. Biochemical and physiological analyses suggested that rebuilding of photosynthetic apparatus including D1 protein and PsbO, and recovery of PSII activities, are essential for acclimation of dark‐grown cells under photo‐induction conditions. Biotechnol. Bioeng. 2016;113: 2088–2099. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.
  相似文献   
8.
Anthropogenic increases in atmospheric carbon dioxide concentration have caused global average sea surface temperature (SST) to increase by approximately 0.11°C per decade between 1971 and 2010 – a trend that is projected to continue through the 21st century. A multitude of research studies have demonstrated that increased SSTs compromise the coral holobiont (cnidarian host and its symbiotic algae) by reducing both host calcification and symbiont density, among other variables. However, we still do not fully understand the role of heterotrophy in the response of the coral holobiont to elevated temperature, particularly for temperate corals. Here, we conducted a pair of independent experiments to investigate the influence of heterotrophy on the response of the temperate scleractinian coral Oculina arbuscula to thermal stress. Colonies of O. arbuscula from Radio Island, North Carolina, were exposed to four feeding treatments (zero, low, moderate, and high concentrations of newly hatched Artemia sp. nauplii) across two independent temperature experiments (average annual SST (20°C) and average summer temperature (28°C) for the interval 2005–2012) to quantify the effects of heterotrophy on coral skeletal growth and symbiont density. Results suggest that heterotrophy mitigated both reduced skeletal growth and decreased symbiont density observed for unfed corals reared at 28°C. This study highlights the importance of heterotrophy in maintaining coral holobiont fitness under thermal stress and has important implications for the interpretation of coral response to climate change.  相似文献   
9.
甲藻的异养营养型   总被引:3,自引:0,他引:3  
孙军  郭术津 《生态学报》2011,31(20):6270-6286
综述了甲藻的异养类型。目前已知异养营养型在甲藻中广泛存在,只有很少几种甲藻营严格自养营养方式。有近一半的甲藻物种是没有色素体的,还有很多甲藻即使具有色素体也会有异养营养需求,称为兼养营养类型。这些兼养类群不一定主要以有机物作为其获取碳的来源,而仅仅是补充一些生长必需的有机物如维生素、生物素等。兼养类群以渗透营养和腐食营养方式进行,同时也可以寄生方式和共生方式进行兼养生活。无色素体的甲藻以有机物作为碳的唯一来源,仅仅依靠异养方式生存,属于严格异养营养方式,又称有机营养型。它们是甲藻异养营养型的主体,其主要类型有寄生、渗透营养和吞噬营养。由于吞噬营养是甲藻异养的主要类型,因此论述了3种吞噬营养型:吞噬营养方式、捕食茎营养方式和捕食笼营养方式。吞噬营养方式在无甲类和具甲类甲藻中都有存在,主要通过甲藻细胞的纵沟或底部对猎物进行吞噬,也有研究发现吞噬部位为顶孔或片间带。捕食茎营养方式是通过捕食茎刺穿猎物细胞膜并吸食其细胞质来获取营养,在异养甲藻中也较常见。捕食笼营养方式只在原多甲藻属(Protoperidinium)和翼藻属(Diplopsalis)里发现,是甲藻通过鞭毛孔分泌细胞质到胞外形成捕食笼将猎物包裹并进行消化来摄食的。甲藻摄食对象尺寸范围变化较大,小至几微米,大至几百微米。有些甲藻具有摄食选择性,通过感应猎物释放的化学物质来判断猎物的位置并进行摄食,摄食完成后由于体积的增加经常会发生细胞分裂和蜕鞘。对于甲藻异养的其他形式如拦截摄食营养方式、伪足摄食营养方式、口足摄食营养方式、触手摄食营养方式等只作简单介绍。还就甲藻异养的研究方法、其生态学意义和进化学意义进行简要论述,并对相关研究进行展望。  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号