首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6278篇
  免费   956篇
  国内免费   528篇
  2023年   162篇
  2022年   106篇
  2021年   205篇
  2020年   357篇
  2019年   393篇
  2018年   302篇
  2017年   362篇
  2016年   295篇
  2015年   298篇
  2014年   331篇
  2013年   402篇
  2012年   318篇
  2011年   294篇
  2010年   297篇
  2009年   319篇
  2008年   386篇
  2007年   420篇
  2006年   350篇
  2005年   302篇
  2004年   234篇
  2003年   210篇
  2002年   214篇
  2001年   199篇
  2000年   185篇
  1999年   143篇
  1998年   127篇
  1997年   92篇
  1996年   48篇
  1995年   62篇
  1994年   44篇
  1993年   55篇
  1992年   40篇
  1991年   24篇
  1990年   28篇
  1989年   19篇
  1988年   18篇
  1987年   20篇
  1986年   20篇
  1985年   17篇
  1984年   12篇
  1983年   4篇
  1982年   15篇
  1981年   8篇
  1980年   6篇
  1979年   5篇
  1978年   3篇
  1977年   5篇
  1976年   3篇
  1972年   1篇
  1958年   1篇
排序方式: 共有7762条查询结果,搜索用时 15 毫秒
1.
2.
Habitat destruction is driving biodiversity loss in remaining ecosystems, and ecosystem functioning and services often directly depend on biodiversity. Thus, biodiversity loss is likely creating an ecosystem service debt: a gradual loss of biodiversity‐dependent benefits that people obtain from remaining fragments of natural ecosystems. Here, we develop an approach for quantifying ecosystem service debts, and illustrate its use to estimate how one anthropogenic driver, habitat destruction, could indirectly diminish one ecosystem service, carbon storage, by creating an extinction debt. We estimate that c. 2–21 Pg C could be gradually emitted globally in remaining ecosystem fragments because of plant species loss caused by nearby habitat destruction. The wide range for this estimate reflects substantial uncertainties in how many plant species will be lost, how much species loss will impact ecosystem functioning and whether plant species loss will decrease soil carbon. Our exploratory analysis suggests that biodiversity‐dependent ecosystem service debts can be globally substantial, even when locally small, if they occur diffusely across vast areas of remaining ecosystems. There is substantial value in conserving not only the quantity (area), but also the quality (biodiversity) of natural ecosystems for the sustainable provision of ecosystem services.  相似文献   
3.
4.
The most common approach to predicting how species ranges and ecological functions will shift with climate change is to construct correlative species distribution models (SDMs). These models use a species’ climatic distribution to determine currently suitable areas for the species and project its potential distribution under future climate scenarios. A core, rarely tested, assumption of SDMs is that all populations will respond equivalently to climate. Few studies have examined this assumption, and those that have rarely dissect the reasons for intraspecific differences. Focusing on the arctic-alpine cushion plant Silene acaulis, we compared predictive accuracy from SDMs constructed using the species’ full global distribution with composite predictions from separate SDMs constructed using subpopulations defined either by genetic or habitat differences. This is one of the first studies to compare multiple ways of constructing intraspecific-level SDMs with a species-level SDM. We also examine the contested relationship between relative probability of occurrence and species performance or ecological function, testing if SDM output can predict individual performance (plant size) and biotic interactions (facilitation). We found that both genetic- and habitat-informed SDMs are considerably more accurate than a species-level SDM, and that the genetic model substantially differs from and outperforms the habitat model. While SDMs have been used to infer population performance and possibly even biotic interactions, in our system these relationships were extremely weak. Our results indicate that individual subpopulations may respond differently to climate, although we discuss and explore several alternative explanations for the superior performance of intraspecific-level SDMs. We emphasize the need to carefully examine how to best define intraspecific-level SDMs as well as how potential genetic, environmental, or sampling variation within species ranges can critically affect SDM predictions. We urge caution in inferring population performance or biotic interactions from SDM predictions, as these often-assumed relationships are not supported in our study.  相似文献   
5.

Aim

This study formally evaluates the ability of three models to use geographical data on species distribution to predict the habitat use patterns of species in heterogeneous landscapes.

Location

Species and habitats in the Brazilian Atlantic Rain Forest were investigated.

Methods

Based on empirical data on harvestmen and scorpions, we estimated the strength of species association with preferred habitat and classified them as habitat generalists or habitat specialists. We compared these empirical results with predictions made using data on species range size (model 1), species occurrence in biomes (model 2) and species occurrence in habitats within the biomes (model 3).

Results

We used 1,278 records of eight harvestman and two scorpion species that had specific determination and enough sampling numbers to allow safe identification of habitat specialization. We observed the following: (1) the extension of species occurrence did not influence the strength of species–habitat association (estimated by IndVal), which led us to reject model 1; (2) species habitat specialization derived from occurrences in biomes was 60% coincident with the classification derived from empirical data. This value is not different enough from the value expected by chance for these data, which also led us to reject model 2; and (3) species classification derived from secondary data about the habitats used had a significant coincidence of 80% with the empirical classification, which led us to accept model 3.

Main conclusions

For correct classification of species habitat specialization using secondary distributional data, we recommend that future studies consider using the most accurate information available on the habitats used by species. Especially for megadiverse and understudied groups, information about habitats used is not easy to obtain, so it is important for researchers and institutions to register and disseminate this information, which could support many other studies.
  相似文献   
6.
Documenting local space use of birds that move rapidly, but are too small to carry GPS tags, such as swallows and swifts, can be challenging. For these species, tracking methods such as manual radio‐telemetry and visual observation are either inadequate or labor‐ and time‐intensive. Another option is use of an automated telemetry system, but equipment for such systems can be costly when many receivers are used. Our objective, therefore, was to determine if an automated radio‐telemetry system, consisting of just two receivers, could provide an alternative to manual tracking for gathering data on local space use of six individuals of three species of aerial insectivores, including one Cliff Swallow (Petrochelidon pyrrhonota), one Eastern Phoebe (Sayornis phoebe), and four Barn Swallows (Hirundo rustica). We established automated radio‐telemetry systems at three sites near the city of Peterborough in eastern Ontario, Canada, from May to August 2015. We evaluated the location error of our two‐receiver system using data from moving and stationary test transmitters at known locations, and used telemetry data from the aerial insectivores as a test of the system's ability to track rapidly moving birds under field conditions. Median location error was ~250 m for automated telemetry test locations after filtering. More than 90% of estimated locations had large location errors and were removed from analysis, including all locations > 1 km from receiver stations. Our automated telemetry receivers recorded 17,634 detections of the six radio‐tagged birds. However, filtering removed an average of 89% of bird location estimates, leaving only the Cliff Swallow with enough locations for analysis of space use. Our results demonstrate that a minimal automated radio‐telemetry system can be used to assess local space use by small, highly mobile birds, but the resolution of the data collected using only two receiver stations was coarse and had a limited range. To improve both location accuracy and increase the percentage of usable location estimates collected, we suggest that, in future studies, investigators use receivers that simultaneously record signals detected by all antennas, and use of a minimum of three receiver stations with more antennas at each station.  相似文献   
7.
8.
9.
10.
张琼  钱法文 《生态学报》2015,35(21):7236-7243
2012年10月至2013年5月,采用焦点取样法对在吉林莫莫格国家级自然保护区内秋季和春季迁徙停歇的以及在江西鄱阳湖国家级自然保护区内越冬的白鹤(Grus leucogeranus)幼鹤行为进行了研究。结果表明,幼鹤取食行为比例从秋季迁徙时的23.0%增加到越冬晚期时的82.7%,但春季迁徙期减少为61.9%;幼鹤乞食行为比例从秋季迁徙时的58.2%减少至春季迁徙时的1.2%;幼鹤警戒行为比例从秋季迁徙时的1.0%增加至春季迁徙时的7.1%。幼鹤在春季迁徙期的理羽及静栖行为显著高于越冬期,这种行为的差异可能与食物的丰富度相关。环境因子中,风速对幼鹤静栖行为有显著影响,幼鹤取食及警戒行为与气温呈显著正相关。秋季迁徙及越冬晚期,幼鹤行为日节律在13:00—14:00时出现明显的取食低谷期,而春季迁徙期时则推后1小时。整个观察期间,幼鹤从雄鹤和雌鹤获得食物频次无显著差异,但不同时间段幼鹤从雄、雌成鹤处获得食物频次差异是显著的。研究从行为学的角度展示白鹤幼鹤的生长过程及不同性别成鹤对幼鹤生长的贡献。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号