首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24026篇
  免费   1955篇
  国内免费   1155篇
  2023年   269篇
  2022年   347篇
  2021年   508篇
  2020年   677篇
  2019年   845篇
  2018年   691篇
  2017年   602篇
  2016年   603篇
  2015年   681篇
  2014年   1091篇
  2013年   1381篇
  2012年   794篇
  2011年   1048篇
  2010年   810篇
  2009年   1082篇
  2008年   1106篇
  2007年   1241篇
  2006年   1117篇
  2005年   1051篇
  2004年   895篇
  2003年   849篇
  2002年   818篇
  2001年   682篇
  2000年   646篇
  1999年   588篇
  1998年   533篇
  1997年   474篇
  1996年   518篇
  1995年   494篇
  1994年   455篇
  1993年   496篇
  1992年   420篇
  1991年   414篇
  1990年   341篇
  1989年   286篇
  1988年   284篇
  1987年   241篇
  1986年   208篇
  1985年   257篇
  1984年   270篇
  1983年   152篇
  1982年   198篇
  1981年   165篇
  1980年   137篇
  1979年   96篇
  1978年   91篇
  1977年   49篇
  1976年   44篇
  1975年   24篇
  1974年   21篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Early environment influences later performance in fishes   总被引:1,自引:0,他引:1  
Conditions fish encounter during embryogenesis and early life history can leave lasting effects not only on morphology, but also on growth rate, life‐history and behavioural traits. The ecology of offspring can be affected by conditions experienced by their parents and mother in particular. This review summarizes such early impacts and their ecological influences for a variety of teleost species, but with special reference to salmonids. Growth and adult body size, sex ratio, egg size, lifespan and tendency to migrate can all be affected by early influences. Mechanisms behind such phenotypically plastic impacts are not well known, but epigenetic change appears to be one central mechanism. The thermal regime during development and incubation is particularly important, but also early food consumption and intraspecific density can all be responsible for later life‐history variation. For behavioural traits, early experiences with effects on brain, sensory development and cognition appear essential. This may also influence boldness and other social behaviours such as mate choice. At the end of the review, several issues and questions for future studies are given.  相似文献   
2.
Knowledge of breeding ecology is required for many conservation interventions. The Seychelles Black Parrot Coracopsis barklyi, endemic to the island of Praslin, is vulnerable to extinction. We aimed to improve understanding of C. barklyi breeding ecology to aid conservation planning. We present the results of four years of research, including nesting cavity characteristics and availability, reproductive success, breeding parameters, parental behaviour and reproductive strategy. Thirty-six breeding attempts were studied over the four seasons. Nests were mainly located in Coco de Mer palms Lodoicea maldivica. Deeper cavities with more canopy cover were preferred. There may be a shortage of high-quality nesting cavities in intensive breeding seasons. Average clutch size was 2.2 eggs, incubation period was c. 15 d and egg fertility was 71%. Rats were key nest predators, causing the failure of up to 33% of breeding attempts. The probability of nest success was 53%. At least 57% of fledglings survived their first year. This species breeds cooperatively and practices a highly unusual side-by-side copulation. We discuss the implications of the results in the context of former, ongoing and potential conservation measures for C. barklyi including translocation, invasive species management, nest box provisioning, habitat restoration and further research.  相似文献   
3.
调亏灌溉对菘蓝水分利用及产量的影响   总被引:4,自引:0,他引:4  
通过探究水分调亏对河西地区膜下滴灌菘蓝(Isatis indigotica)各项生理指标、产量和水分利用的影响,为菘蓝高效节水种植提供理论指导。于2016年在河西走廊中部张掖市民乐县益民灌溉试验站进行菘蓝水分调亏研究,在保持苗期和肉质根成熟期充分灌溉的情况下,在菘蓝营养生长期和肉质根生长期分别进行轻度、中度和重度的水分亏缺处理,并测定各项光合生理指标、产量和水分利用率。结果表明,营养生长期和肉质根生长期的中度与重度水分亏缺显著降低了菘蓝叶片净光合速率、叶面积指数、株高及主根长,并且随水分亏缺程度加重降幅增大;而轻度水分亏缺与对照组的差异不显著。营养生长期和肉质根生长期轻度水分亏缺处理的菘蓝产量与水分利用效率最高,分别达到8 239.56 kg·hm~(–2)和24.11kg·hm~(–2)·mm~(–1);其它水分亏缺处理组产量和水分利用效率均有所降低,与对照组之间差异显著(P0.05),重度水分亏缺处理各项指标均最低。因此,最优的菘蓝水分调控处理为营养生长期和肉质根生长期的轻度水分调亏,能够降低菘蓝耗水量,提高水分利用效率且其产量不会降低。  相似文献   
4.
5.
6.
Pleiotrophin (Ptn) plays an important role in bone growth through regulating osteoblasts’ functions. The underlying signaling mechanisms are not fully understood. In the current study, we found that Ptn induced heparin-binding epidermal growth factor (HB-EGF) release to trans-activate EGF-receptor (EGFR) in both primary osteoblasts and osteoblast-like MC3T3-E1 cells. Meanwhile, Ptn activated Akt and Erk signalings in cultured osteoblasts. The EGFR inhibitor AG1478 as well as the monoclonal antibody against HB-EGF (anti-HB-EGF) significantly inhibited Ptn-induced EGFR activation and Akt and Erk phosphorylations in MC3T3-E1 cells and primary osteoblasts. Further, EGFR siRNA depletion or dominant negative mutation suppressed also Akt and Erk activation in MC3T3-E1 cells. Finally, we observed that Ptn increased alkaline phosphatase (ALP) activity and inhibited dexamethasone (Dex)-induced cell death in both MC3T3-E1 cells and primary osteoblasts, such effects were alleviated by AG1478 or anti-HB-EGF. Together, these results suggest that Ptn-induced Akt/Erk activation and some of its pleiotropic functions are mediated by EGFR trans-activation in cultured osteoblasts.  相似文献   
7.
Background and Aims Ontogenetic changes in anti-herbivore defences are common and result from variation in resource availability and herbivore damage throughout plant development. However, little is known about the simultaneous changes of multiple defences across the entire development of plants, and how such changes affect plant damage in the field. The aim of this study was to assess if changes in the major types of plant resistance and tolerance can explain natural herbivore damage throughout plant ontogeny.Methods An assessment was made of how six defensive traits, including physical, chemical and biotic resistance, simultaneously change across the major transitions of plant development, from seedlings to reproductive stages of Turnera velutina growing in the greenhouse. In addition, an experiment was performed to assess how plant tolerance to artificial damage to leaves changed throughout ontogeny. Finally, leaf damage by herbivores was evaluated in a natural population.Key Results The observed ontogenetic trajectories of all defences were significantly different, sometimes showing opposite directions of change. Whereas trichome density, leaf toughness, extrafloral nectary abundance and nectar production increased, hydrogen cyanide and compensatory responses decreased throughout plant development, from seedlings to reproductive plants. Only water content was higher at the intermediate juvenile ontogenetic stages. Surveys in a natural population over 3 years showed that herbivores consumed more tissue from juvenile plants than from younger seedlings or older reproductive plants. This is consistent with the fact that juvenile plants were the least defended stage.Conclusions The results suggest that defensive trajectories are a mixed result of predictions by the Optimal Defence Theory and the Growth–Differentiation Balance Hypothesis. The study emphasizes the importance of incorporating multiple defences and plant ontogeny into further studies for a more comprehensive understanding of plant defence evolution.  相似文献   
8.
The efficient aquisition of nutrients from leaves by insect herbivores increases their nutrient assimilation rates and overall fitness. Caterpillars of the gypsy moth (Lymantria dispar L.) have high protein assimilation efficiencies (PAE) from the immature leaves of trees such as red oak (Quercus rubra) and sugar maple (Acer saccharum) (71–81%) but significantly lower PAE from their mature leaves (45–52%). By contrast to this pattern, both PAE and carbohydrate assimilation efficiencies (CAE) remain high for L. dispar larvae on the mature leaves of poplar (Populus alba × Populus tremula) grown in greenhouse conditions. The present study tests two alternative hypotheses: (i) outdoor environmental stresses cause decreased nutrient assimilation efficiencies from mature poplar leaves and (ii) nutrients in the mature leaves of trees in the poplar family (Salicaceae) remain readily available for L. dispar larvae. When poplar trees are grown in ambient outdoor conditions, PAE and CAE remain high (approximately 75% and 78%, respectively) in L. dispar larvae, in contrast to the first hypothesis. When larvae feed on the mature leaves of species in the Salicaceae [aspen (Populus tremuloides), cottonwood (Populus deltoides), willow (Salix nigra) and poplar], PAE and CAE also remain high (68–76% and 72–92%, respectively), consistent with the second hypothesis. Larval growth rates are strongly associated with protein assimilation rates, and more strongly associated with protein assimilation rates than with carbohydrate assimilation rates. It is concluded that tree species in the Salicaceae are relatively high‐quality host plants for L. dispar larvae, in part, because nutrients in their mature leaves remain readily available.  相似文献   
9.
Although little is known on the impact of environment on telomere length dynamics, it has been suggested to be affected by stress, lifestyle and/or life‐history strategies of animals. We here compared telomere dynamics in erythrocytes of hatchlings and fledglings of the brood parasite great spotted cuckoos (Clamator glandarius) and of magpies (Pica pica), their main host in Europe. In magpie chicks, telomere length decreased from hatching to fledging, whereas no significant change in telomere length of great spotted cuckoo chicks was found. Moreover, we found interspecific differences in the association between laying date and telomere shortening. Interspecific differences in telomere shortening were interpreted as a consequence of differences in lifestyle and life‐history characteristics of magpies and great spotted cuckoos. In comparison with magpies, cuckoos experience reduced sibling competition and higher access to resources and, consequently, lower stressful environmental conditions during the nestling phase. These characteristics also explain the associations between telomere attrition and environmental conditions (i.e. laying date) for magpies and the absence of association for great spotted cuckoos. These results therefore fit expectations on telomere dynamics derived from interspecific differences in lifestyle and life history of brood parasites and their bird hosts.  相似文献   
10.

Background and Aims

Experimental evidence challenges the approximation, central in crop models, that developmental events follow a fixed thermal time schedule, and indicates that leaf emergence events play a role in the timing of development. The objective of this study was to build a structural development model of maize (Zea mays) based on a set of coordination rules at organ level that regulate duration of elongation, and to show how the distribution of leaf sizes emerges from this.

Methods

A model of maize development was constructed based on three coordination rules between leaf emergence events and the dynamics of organ extension. The model was parameterized with data from maize grown at a low plant population density and tested using data from maize grown at high population density.

Key Results

The model gave a good account of the timing and duration of organ extension. By using initial conditions associated with high population density, the model reproduced well the increase in blade elongation duration and the delay in sheath extension in high-density populations compared with low-density populations. Predictions of the sizes of sheaths at high density were accurate, whereas predictions of the dynamics of blade length were accurate up to rank 9; moderate overestimation of blade length occurred at higher ranks.

Conclusions

A set of simple rules for coordinated growth of organs is sufficient to simulate the development of maize plant structure without taking into account any regulation by assimilates. In this model, whole-plant architecture is shaped through initial conditions that feed a cascade of coordination events.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号