首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34506篇
  免费   3994篇
  国内免费   1986篇
  2023年   530篇
  2022年   538篇
  2021年   840篇
  2020年   1037篇
  2019年   1180篇
  2018年   1028篇
  2017年   1127篇
  2016年   1073篇
  2015年   1252篇
  2014年   1440篇
  2013年   2055篇
  2012年   1390篇
  2011年   1647篇
  2010年   1400篇
  2009年   1990篇
  2008年   1941篇
  2007年   2063篇
  2006年   2002篇
  2005年   1966篇
  2004年   1796篇
  2003年   1511篇
  2002年   1445篇
  2001年   978篇
  2000年   926篇
  1999年   827篇
  1998年   690篇
  1997年   593篇
  1996年   523篇
  1995年   568篇
  1994年   524篇
  1993年   446篇
  1992年   372篇
  1991年   324篇
  1990年   275篇
  1989年   254篇
  1988年   201篇
  1987年   194篇
  1986年   149篇
  1985年   205篇
  1984年   205篇
  1983年   146篇
  1982年   165篇
  1981年   109篇
  1980年   137篇
  1979年   85篇
  1978年   69篇
  1977年   46篇
  1976年   51篇
  1973年   43篇
  1972年   29篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
The social environment modulates gene expression, physiology, behaviour and patterns of inheritance. For more than 50 years, this concept has been investigated using approaches that include partitioning the social component out of behavioural heritability estimates, studying maternal effects on offspring, and analysing dominance hierarchies. Recent advances have formalized this ‘social environment effect’ by providing a more nuanced approach to the study of social influences on behaviour while recognizing evolutionary implications. Yet, in most of these formulations, the dynamics of social interactions are not accounted for. Also, the reciprocity between individual behaviour and group‐level interactions has been largely ignored. Consistent with evolutionary theory, the principles of social interaction are conserved across a broad range of taxa. While noting parallels in diverse organisms, this review uses Drosophila melanogaster as a case study to revisit what is known about social interaction paradigms. We highlight the benefits of integrating the history and pattern of interactions among individuals for dissecting molecular mechanisms that underlie social modulation of behaviour.  相似文献   
2.
Herbivory is a fundamental process that controls primary producer abundance and regulates energy and nutrient flows to higher trophic levels. Despite the recent proliferation of small‐scale studies on herbivore effects on aquatic plants, there remains limited understanding of the factors that control consumer regulation of vascular plants in aquatic ecosystems. Our current knowledge of the regulation of primary producers has hindered efforts to understand the structure and functioning of aquatic ecosystems, and to manage such ecosystems effectively. We conducted a global meta‐analysis of the outcomes of plant–herbivore interactions using a data set comprised of 326 values from 163 studies, in order to test two mechanistic hypotheses: first, that greater negative changes in plant abundance would be associated with higher herbivore biomass densities; second, that the magnitude of changes in plant abundance would vary with herbivore taxonomic identity. We found evidence that plant abundance declined with increased herbivore density, with plants eliminated at high densities. Significant between‐taxa differences in impact were detected, with insects associated with smaller reductions in plant abundance than all other taxa. Similarly, birds caused smaller reductions in plant abundance than echinoderms, fish, or molluscs. Furthermore, larger reductions in plant abundance were detected for fish relative to crustaceans. We found a positive relationship between herbivore species richness and change in plant abundance, with the strongest reductions in plant abundance reported for low herbivore species richness, suggesting that greater herbivore diversity may protect against large reductions in plant abundance. Finally, we found that herbivore–plant nativeness was a key factor affecting the magnitude of herbivore impacts on plant abundance across a wide range of species assemblages. Assemblages comprised of invasive herbivores and native plant assemblages were associated with greater reductions in plant abundance compared with invasive herbivores and invasive plants, native herbivores and invasive plants, native herbivores and mixed‐nativeness plants, and native herbivores and native plants. By contrast, assemblages comprised of native herbivores and invasive plants were associated with lower reductions in plant abundance compared with both mixed‐nativeness herbivores and native plants, and native herbivores and native plants. However, the effects of herbivore–plant nativeness on changes in plant abundance were reduced at high herbivore densities. Our mean reductions in aquatic plant abundance are greater than those reported in the literature for terrestrial plants, but lower than aquatic algae. Our findings highlight the need for a substantial shift in how biologists incorporate plant–herbivore interactions into theories of aquatic ecosystem structure and functioning. Currently, the failure to incorporate top‐down effects continues to hinder our capacity to understand and manage the ecological dynamics of habitats that contain aquatic plants.  相似文献   
3.
The insulin receptor (IR) binds insulin and plays important roles in glucose homeostasis by regulating the tyrosine kinase activity at its C-terminus. Its transmembrane domain (TMD) is shown to be important for transferring conformational changes induced by insulin across the cell membrane to regulate kinase activity. In this study, a construct IR940–988 containing the TMD was expressed and purified for structural studies. Its solution structure in dodecylphosphocholine (DPC) micelles was determined. The sequence containing residues L962 to Y976 of the TMD of the IR in micelles adopts a well-defined helical structure with a kink formed by glycine and proline residues present at its N-terminus, which might be important for its function. Paramagnetic relaxation enhancement (PRE) and relaxation experimental results suggest that residues following the TMD are flexible and expose to aqueous solution. Although purified IR940–988 in micelles existed mainly as a monomeric form verified by gel filtration and relaxation analysis, cross-linking study suggests that it may form a dimer or oligomers under micelle conditions.  相似文献   
4.
目的:为阐明微生物群落演替及功能与浸出效率之间关系奠定基础,以及如何提高黄铜矿生物浸出效率和铜回收率提供理 论依据。方法:通过连续传代培养进行驯化,使得复合菌群的矿浆浓度耐受能力达到25 %(w/v)。采用该复合菌群在25 %矿浆浓 度下浸出黄铜矿,同时利用变性梯度凝胶电泳和克隆文库技术分析浸出过程中的微生物多样性。最后,采用实时荧光定量PCR 对 浸出过程中微生物群落结构进行定量解析。结果:28天内黄铜矿浸出率能够达到95.1 %,而驯化前的浸出率只有51.5%。该复合 菌群主要由Acidithiobacillus caldus, Sulfobacillus acidophilus,和Fereoplasma theroplasma thermophilum组成,其中Acidithbacillus caldus是浸出前期和后期的优势种群,而Sulfobacillus acidophilus在浸出中期均有竞争优势, Ferroplasma thermophilum在整个浸出过程中占 据整个群落的比例均较低。结论:本研究获得的复合菌群具有较强的浸出黄铜矿能力, Acidithiobacillus caldus和Sulfobacillus acidophilus在浸出过程中起着重要的作用,pH 值和铜浸出率与群落结构相关性较高。  相似文献   
5.
6.
7.
8.
Phenotypic plasticity is the ability of a genotype to produce more than one phenotype in order to match the environment. Recent theory proposes that the major axis of genetic variation in a phenotypically plastic population can align with the direction of selection. Therefore, theory predicts that plasticity directly aids adaptation by increasing genetic variation in the direction favoured by selection and reflected in plasticity. We evaluated this theory in the freshwater crustacean Daphnia pulex, facing predation risk from two contrasting size-selective predators. We estimated plasticity in several life-history traits, the G matrix of these traits, the selection gradients on reproduction and survival, and the predicted responses to selection. Using these data, we tested whether the genetic lines of least resistance and the predicted response to selection aligned with plasticity. We found predator environment-specific G matrices, but shared genetic architecture across environments resulted in more constraint in the G matrix than in the plasticity of the traits, sometimes preventing alignment of the two. However, as the importance of survival selection increased, the difference between environments in their predicted response to selection increased and resulted in closer alignment between the plasticity and the predicted selection response. Therefore, plasticity may indeed aid adaptation to new environments.  相似文献   
9.
Gymnodiptychus dybowskii is endemic to Xinjiang, China and has been locally listed as protected animals. To investigate its genetic diversity and structure, specimens were collected from six localities in Yili River system and Kaidu River. Fragments of 1092bp Cyt b gene were sequenced for 116 individuals. A total of 21 haplotypes were found in all samples, and no haplotype was shared between Yili River system and Kaidu River population. Sequence comparisons revealed 123 variable sites, with eight singleton sites and 115 parsimony informative sites. For all the populations examined, the haplotype diversity (h) was 0.8298 ± 0.0226, nucleotide diversity (π) was 0.2521 ± 0.1202, and average number of pairwise nucleotide differences (k) was 275.3369 ± 118.5660. AMOVA analysis showed that the differences were significant for total populations except for Yili River system populations. The pairwise Fst values revealed same conclusion with AMOVA analysis: Kaidu River population was divergent from Yili River system populations. The genetic distance between two groups was 0.108 and the divergence time was estimated at 5.4–6.6 Ma, the uplift of Tianshan Mountain might have separated them and resulted in the genetic differentiation. The neutrality test and mismatch analysis indicated that both two groups of G. dybowskii had went through population expansion, the expansion time of Yili River system and Kaidu River population was estimated at 0.5859–0.7146 Ma and 0.5151–0.6282 Ma, respectively. The climate changes of Qinghai-Tibetan Plateau might have influenced the demographic history of G. dybowskii.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号