首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28065篇
  免费   2821篇
  国内免费   1666篇
  2024年   14篇
  2023年   507篇
  2022年   385篇
  2021年   896篇
  2020年   1011篇
  2019年   1080篇
  2018年   975篇
  2017年   1006篇
  2016年   993篇
  2015年   1175篇
  2014年   1409篇
  2013年   1685篇
  2012年   1334篇
  2011年   1195篇
  2010年   1091篇
  2009年   1387篇
  2008年   1440篇
  2007年   1549篇
  2006年   1389篇
  2005年   1308篇
  2004年   1201篇
  2003年   1103篇
  2002年   1046篇
  2001年   842篇
  2000年   799篇
  1999年   636篇
  1998年   496篇
  1997年   479篇
  1996年   443篇
  1995年   386篇
  1994年   399篇
  1993年   379篇
  1992年   302篇
  1991年   274篇
  1990年   226篇
  1989年   230篇
  1988年   186篇
  1987年   168篇
  1986年   131篇
  1985年   155篇
  1984年   161篇
  1983年   99篇
  1982年   109篇
  1981年   122篇
  1980年   104篇
  1979年   76篇
  1978年   61篇
  1977年   47篇
  1976年   38篇
  1974年   11篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
We sought to develop nuclear DNA (nDNA) probes which could be used to complement mtDNA and DNA fingerprinting markers in distinguishing striped bass, Morone saxatilis (Walbaum), from discrete spawning systems. Restriction endonuclease-generated single copy, 10–20-kb striped bass nuclear nDNA fragments were cloned into the bacteriophage vector Lambda Dash II and tested in Southern blot analyses for their abilities to reveal population-specific polymorphisms. Three of the I7 nDNA sequences tested exhibited polymorphisms which potentially could be used to delineate striped bass populations. One probe, DSB 22, revealed significant genotypic frequency differences between Gulf of Mexico and Atlantic striped bass and among striped bass representative of some Atlantic systems. These preliminary results suggest that single copy nDNA sequences may provide sufficient polymorphisms to aid in stock identification of species which proved genetically monomorphic using other approaches.  相似文献   
2.
Serum samples of Meishan (13 animals) and Meishan x Wild Boar crosses (361 animals) were analysed by means of two-dimensional electrophoresis. Some new variants in protease inhibitor systems PO1A, PO1B and PI2 are reported.  相似文献   
3.
The primitive land plant life cycle featured the production of spores of unimodal size, a condition called homospory. The evolution of bimodal size distributions with small male spores and large female spores, known as heterospory, was an innovation that occurred repeatedly in the history of land plants. The importance of desiccation‐resistant spores for colonization of the land is well known, but the adaptive value of heterospory has never been well established. It was an addition to a sexual life cycle that already involved male and female gametes. Its role as a precursor to the evolution of seeds has received much attention, but this is an evolutionary consequence of heterospory that cannot explain the transition from homospory to heterospory (and the lack of evolutionary reversal from heterospory to homospory). Enforced outcrossing of gametophytes has often been mentioned in connection to heterospory, but we review the shortcomings of this argument as an explanation of the selective advantage of heterospory. Few alternative arguments concerning the selective forces favouring heterospory have been proposed, a paucity of attention that is surprising given the importance of this innovation in land plant evolution. In this review we highlight two ideas that may lead us to a better understanding of why heterospory evolved. First, models of optimal resource allocation – an approach that has been used for decades in evolutionary ecology to help understand parental investment and other life‐history patterns – suggest that an evolutionary increase in spore size could reach a threshold at which small spores yielding small, sperm‐producing gametophytes would return greater fitness per unit of resource investment than would large spores and bisexual gametophytes. With the advent of such microspores, megaspores would evolve under frequency‐dependent selection. This argument can account for the appearance of heterospory in the Devonian, when increasingly tall and complex vegetative communities presented competitive conditions that made large spore size advantageous. Second, heterospory is analogous in many ways to anisogamy. Indeed, heterospory is a kind of re‐invention of anisogamy within the context of a sporophyte‐dominant land plant life cycle. The evolution of anisogamy has been the subject of important theoretical and empirical investigation. Recent work in this area suggests that mate‐encounter dynamics set up selective forces that can drive the evolution of anisogamy. We suggest that similar dispersal and mating dynamics could have underlain spore size differentiation. The two approaches offer predictions that are consistent with currently available data but could be tested far more thoroughly. We hope to re‐establish attention on this neglected aspect of plant evolutionary biology and suggest some paths for empirical investigation.  相似文献   
4.
Understanding the patterns of genetic variations within fertility‐related genes and the evolutionary forces that shape such variations is crucial in predicting the fitness landscapes of subsequent generations. This study reports distinct evolutionary features of two differentially expressed mammalian proteins [CaMKIV (Ca2+/calmodulin‐dependent protein kinase IV) and CaS (calspermin)] that are encoded by a single gene, CAMK4. The multifunctional CaMKIV, which is expressed in multiple tissues including testis and ovary, is evolving at a relatively low rate (0.46–0.64 × 10?9 nucleotide substitutions/site/year), whereas the testis‐specific CaS gene, which is predominantly expressed in post‐meiotic cells, evolves at least three to four times faster (1.48–1.98 × 10?9 substitutions/site/year). Concomitantly, maximum‐likelihood‐based selection analyses revealed that the ubiquitously expressed CaMKIV is constrained by intense purifying selection and, therefore, remained functionally highly conserved throughout the mammalian evolution, whereas the testis‐specific CaS gene is under strong positive selection. The substitution rates of different mammalian lineages within both genes are positively correlated with GC content, indicating the possible influence of GC‐biased gene conversion on the estimated substitution rates. The observation of such unusually high GC content of the CaS gene (≈74%), particularly in the lineage that comprises the bovine species, suggests the possible role of GC‐biased gene conversion in the evolution of CaS that mimics positive selection.  相似文献   
5.
6.
Little is known about the simultaneous effects of drought stress and plant resistance on herbivorous insects. By subjecting the green peach aphid Myzus persicae Sulzer to well‐watered and drought‐stressed plants of both susceptible and resistant peach (Prunus persica), the effects of both stressors on aphid performance and proteomics are tested. Overall, the influence of the water treatment on aphid performance is less pronounced than the effect of host plant genetic resistance. On the susceptible cultivar, aphid survival, host acceptance and ability to colonize the plant do not depend on water treatment. On the resistant cultivar, aphid survival and ability to colonize are higher on drought‐stressed than on well‐watered plants. A study examining the pattern of protein expression aiming to explain the variation in aphid performance finds higher protein expression in aphids on the drought‐stressed susceptible cultivars compared with the well‐watered ones. In the susceptible cultivar, the regulated proteins are related to energy metabolism and exoskeleton functionality, whereas, in the resistant cultivar, the proteins are involved with the cytoskeleton. Comparison of the protein expression ratios for resistant versus susceptible plants reveals that four proteins are down‐regulated in well‐watered plants and 15 proteins are down‐regulated in drought‐stressed plants. Drought stress applied to the susceptible cultivar induces the regulation of proteins in M. persicae that enable physiological adaptation to maintain an almost unaltered aphid performance. By contrast, for aphids on the resistant cultivar subjected to drought stress, the down‐regulation of proteins responds to an induced host susceptibility effect.  相似文献   
7.
The probable misfit between feet, particularly toes II–V, of 3.0-million-year-oldAustralopithecus afarensis from Hadar, Ethiopia, and the 3.5-million-year-old hominid footprints at Site G, Laetoli, Tanzania, casts doubt thatA. Afarensis made the Laetoli trails. We suggest that another species ofAustralopithecus or an anonymous genus of the Hominidae, with remarkably humanoid feet, walked at Laetoli. It would be imprudent to declare thatHomo was present at Laetoli 3.5 million years ago (my) because there is no evidence of brain expansion, advanced tool manufacture, or other non-locomotor hallmarks of the human condition at Site G.  相似文献   
8.
Summary An equation is developed that describes the condition of homeostasis in a general molecular system containing catalysts. In a prebiotic environment, this condition first results from a critical level of catalytic feedback in feedback loops containing differing organic molecular species. This critical level results in temporary exponential growth in concentrations of those catalyst species participating in the feedback loops, leading to homeostasis as the steady-state endpoint. None of the molecules in any feedback loop need be self-replicating for this autocatalysis to occur. Homeostasis is regarded as a definition of life at the lowest possible hierarchical level. A general mathematical boundary condition is derived for the critical level of catalytic feedback mentioned above-in effect, an origin of life condition. The paper argues that any natural prebiotic system of organic molecules in an H2O medium will automatically form many catalytic feedback loops, even if of very low catalytic efficiency. The analysis in this paper indicates that high temperatures strongly increase the efficiency of such catalytic feedback. If the temperature and total concentration of carbon in the system (e.g., in CO2, CH4, etc.) are sufficiently high, the critical condition for initial exponential growth will be attained. High initial temperatures for the earth are predicted by the planetesimal accretion model.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号