首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   212篇
  免费   21篇
  国内免费   2篇
  2023年   7篇
  2022年   5篇
  2021年   1篇
  2020年   5篇
  2019年   22篇
  2018年   12篇
  2017年   29篇
  2016年   20篇
  2015年   15篇
  2014年   26篇
  2013年   43篇
  2012年   3篇
  2011年   10篇
  2010年   2篇
  2009年   2篇
  2008年   4篇
  2007年   5篇
  2006年   5篇
  2005年   4篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1994年   2篇
  1985年   1篇
  1981年   1篇
排序方式: 共有235条查询结果,搜索用时 46 毫秒
1.
2.
3.
Musculoskeletal models are widely used to investigate joint kinematics and predict muscle force during gait. However, the knee is usually simplified as a one degree of freedom joint and knee ligaments are neglected. The aim of this study was to develop an OpenSim gait model with enhanced knee structures. The knee joint in this study included three rotations and three translations. The three knee rotations and mediolateral translation were independent, with proximodistal and anteroposterior translations occurring as a function of knee flexion/extension. Ten elastic elements described the geometrical and mechanical properties of the anterior and posterior cruciate ligaments (ACL and PCL), and the medial and lateral collateral ligaments (MCL and LCL). The three independent knee rotations were evaluated using OpenSim to observe ligament function. The results showed that the anterior and posterior bundles of ACL and PCL (aACL, pACL and aPCL, pPCL) intersected during knee flexion. The aACL and pACL mainly provided force during knee flexion and adduction, respectively. The aPCL was slack throughout the range of three knee rotations; however, the pPCL was utilised for knee abduction and internal rotation. The LCL was employed for knee adduction and rotation, but was slack beyond 20° of knee flexion. The MCL bundles were mainly used during knee adduction and external rotation. All these results suggest that the functions of knee ligaments in this model approximated the behaviour of the physical knee and the enhanced knee structures can improve the ability to investigate knee joint biomechanics during various gait activities.  相似文献   
4.
The gait pattern of a particular patient can be altered in a large set of pathologies. Tracking the body centre-of-mass (CoM) during the gait allows a quantitative evaluation of these diseases at comparing the gait with normal patterns. A correct estimation of this variable is still an open question because of its non-linearity and inaccurate location. This paper presents a novel strategy for tracking the CoM, using a biomechanical gait model whose parameters are determined by a Bayesian strategy. A particle filter is herein implemented for predicting the model parameters from a set of markers located at the sacral zone. The present approach is compared with other conventional tracking methods and decreases the calculated root mean squared error in about a 56% in the x-axis and 59% in the y-axis.  相似文献   
5.
Clinical gait analysis has proven to reduce uncertainties in selecting the appropriate quantity and type of treatment for patients with neuromuscular disorders. However, gait analysis as a clinical tool is under-utilised due to the limitations and cost of acquiring and managing data. To overcome these obstacles, inertial motion capture (IMC) recently emerged to counter the limitations attributed to other methods. This paper investigates the use of IMC for training and testing a back-propagation artificial neural network (ANN) for the purpose of distinguishing between hemiparetic stroke and able-bodied ambulation. Routine gait analysis was performed on 30 able-bodied control subjects and 28 hemiparetic stroke patients using an IMC system. An ANN was optimised to classify the two groups, achieving a repeatable network accuracy of 99.4%. It is concluded that an IMC system and appropriate computer methods may be useful for the planning and monitoring of gait rehabilitation therapy of stroke victims.  相似文献   
6.
In this study, we have analysed heel strike (HS) and toe off (TO) of normal individuals and hemiplegic patients, taking advantage of output curves acquired from various sensors, and verified the validity of sensor detection methods and their effectiveness when they were used for hemiplegic gaits. Gait phase detections using three different motion sensors were valid, since they all had reliabilities more than 95%, when compared with foot velocity algorithm. Results showed that the tilt sensor and the gyrosensor could detect gait phase more accurately in normal individuals. Vertical acceleration could detect HS most accurately in hemiplegic patient group A. The gyrosensor could detect HS and TO most accurately in hemiplegic patient groups A and B. The detection of TO from all sensor signals was valid in both the patient groups A and B. However, the vertical acceleration detected HS validly in patient group A and the gyrosensor detected HS validly in patient group B.  相似文献   
7.
8.
9.
Gastrocnemius is a premier muscle crossing the knee, but its role in knee biomechanics and on the anterior cruciate ligament (ACL) remains less clear when compared to hamstrings and quadriceps. The effect of changes in gastrocnemius force at late stance when it peaks on the knee joint response and ACL force was initially investigated using a lower extremity musculoskeletal model driven by gait kinematics—kinetics. The tibiofemoral joint under isolated isometric contraction of gastrocnemius was subsequently analyzed at different force levels and flexion angles (0°–90°). Changes in gastrocnemius force at late stance markedly influenced hamstrings forces. Gastrocnemius acted as ACL antagonist by substantially increasing its force. Simulations under isolated contraction of gastrocnemius confirmed this role at all flexion angles, in particular, at extreme knee flexion angles (0° and 90°). Constraint on varus/valgus rotations substantially decreased this effect. Although hamstrings and gastrocnemius are both knee joint flexors, they play opposite roles in respectively protecting or loading ACL. Although the quadriceps is also recognized as antagonist of ACL, at larger joint flexion and in contrast to quadriceps, activity in gastrocnemius substantially increased ACL forces (anteromedial bundle). The fact that gastrocnemius is an antagonist of ACL should help in effective prevention and management of ACL injuries.  相似文献   
10.
Evaluating the effects of load carriage on gait balance stability is important in various applications. However, their quantification has not been rigorously addressed in the current literature, partially due to the lack of relevant computational indices. The novel Dynamic Gait Measure (DGM) characterizes gait balance stability by quantifying the relative effects of inertia in terms of zero-moment point, ground projection of center of mass, and time-varying foot support region. In this study, the DGM is formulated in terms of the gait parameters that explicitly reflect the gait strategy of a given walking pattern and is used for computational evaluation of the distinct balance stability of loaded walking. The observed gait adaptations caused by load carriage (decreased single support duration, inertia effects, and step length) result in decreased DGM values (p < 0.0001), which indicate that loaded walking motions are more statically stable compared with the unloaded normal walking. Comparison of the DGM with other common gait stability indices (the maximum Floquet multiplier and the margin of stability) validates the unique characterization capability of the DGM, which is consistently informative of the presence of the added load.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号