首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   456篇
  免费   77篇
  国内免费   93篇
  2024年   4篇
  2023年   11篇
  2022年   18篇
  2021年   22篇
  2020年   24篇
  2019年   37篇
  2018年   32篇
  2017年   30篇
  2016年   21篇
  2015年   36篇
  2014年   27篇
  2013年   72篇
  2012年   18篇
  2011年   20篇
  2010年   10篇
  2009年   21篇
  2008年   14篇
  2007年   24篇
  2006年   25篇
  2005年   27篇
  2004年   11篇
  2003年   15篇
  2002年   9篇
  2001年   12篇
  2000年   13篇
  1999年   4篇
  1998年   9篇
  1997年   4篇
  1996年   10篇
  1995年   9篇
  1994年   1篇
  1993年   3篇
  1992年   3篇
  1991年   3篇
  1990年   8篇
  1989年   4篇
  1988年   5篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
排序方式: 共有626条查询结果,搜索用时 203 毫秒
1.
To understand the mechanism of spread of pine wilt disease caused by the pinewood nematode, Bursaphelenchus xylophilus, which is vectored by a cerambycid, Monochamus alternatus, the spatial distribution of trees weakened by the nematode was examined within a Pinus thunbergii stand from June to October for 4 years. The weakened trees were distributed in a clumped pattern in 1980 and 1981, at an early stage of infestation. In many cases, they showed a double-clumped pattern. The degree of aggregation was higher in June or July than after August. They were uniformly distributed in June or July 1982 and in June 1983 whereas they showed a double-clumped pattern after August. The trees were frequently weakened in June or July when they were near the trees weakened during the previous year. At quadrat sizes of more than 25 m2, spatial overlapping was pronounced between trees weakened during June–July of the current year and those weakened in the previous year. The seasonal changes in spatial distribution of weakened trees were explained by the interaction among M. alternatus, B. xylophilus and Pinus trees.  相似文献   
2.
Plant growth rate has frequently been associated with herbivore defence: a large investment in quantitative defence compounds occurs at the expense of growth. We tested whether such a relationship also holds for growth rate and pathogen resistance. For 15 radish (Raphanus sativus L.) cultivars, we determined the potential growth rate and the resistance to fungal wilt disease caused by Fusarium oxysporum. We subsequently aimed to explain a putative negative relationship between growth rate and resistance based on plant chemical composition. Both growth rate and resistance level varied greatly among cultivars. Moreover, there was a strong negative correlation between growth rate and resistance, i.e. there are costs associated with a high resistance level. Roots of slow-growing, resistant cultivars have a higher biomass density. Using pyrolysis mass spectrometry. we part1y explained variation in both growth rate and resistance in terms of the same change in chemical composition. Leaves of slow-growing, resistant cultivars contained more cell wall material. Surprisingly, roots of slow-growing, highly resistant cultivars contained significantly less cell wall material, and more cytoplasmic elements (proteins). We speculate that this higher protein concentration is related to high construction and turn-over costs and high metabolic activity. The latter in turn is thought to be responsible for a rapid and adequate resistance reaction, in which phenols may be involved.  相似文献   
3.
Fusarial wilt of tomato (Lycopersicon esculentum Mill.) is a very common and severe disease occurring in most of the vegetable fields in West Bengal, India. Potenciation and formulation of different fungicidal chemicals and phytoextracts were evaluated against the growth of the pathogen wherein carbendazim (bavistin) and leaf extracts of Azadirachta indica (neem) were recorded to be most effective. Combined treatment with 4 ml neem leaf extract and 1 ml captan (0.01%) or with 4 ml garlic bulb extract and 1 ml captan (0.01%) exhibited 100% growth inhibition of the pathogen. Integrated control of the pathogen with phytoextracts, fungicide and biocontrol agents was carried out. Among the treatments, a combination with extracts of neem, captan (0.01%) and metabolites of Trichoderma harzianum was proved to be superior over the other. Field experiment with three fungicides at 0.5% concentration was carried out in randomised block design where application of bavistin showed up to 62.27% reduction of wilt infection in tomato plants. Soil solarisation of tomato field showed 62.50 and 66.69% reduction of infection during the trial years. However, integration of soil solarisation with the applications of T. harzianum, captan (0.01%) and neem resulted in 100% reduction of infection and thus it was recorded as the most effective treatment in reducing the incidence of the disease.  相似文献   
4.
5.
Incorporation of one micromolar IAA in the assay system increased the rate of 14C methionine uptake by tomato cells in suspension and effectively differentiated the rates of uptake such that cells treated with pathogenic and non-pathogenic Fusarium extracts could be easily distinguished in a rapid 3 h assay.  相似文献   
6.
Fusarium langsethiae is a toxigenic fungal species that has been reported in European small‐grain cereal crops such as oats, wheat and barley. Although its relative contribution to fusarium head blight (FHB) symptoms is not well understood, it is reported to contaminate these cereals with high levels of HT‐2 and T‐2 trichothecenes mycotoxins that are currently under consideration for legislation by the European Commission. Ten commercial oat fields in Shropshire and Staffordshire (two adjacent counties in the Midlands) in the UK were surveyed in the 2006/2007 growing season. Samples were taken from predetermined field locations at Zadoks growth stages 32/33, 69, 77‐85 and 90‐92 for F. langsethiae biomass and HT‐2 and T‐2 toxins quantification. The results from this study showed that oats can be heavily infected with F. langsethiae and have high concentrations of HT‐2 and T‐2 toxins with no apparent FHB symptoms. The regression of HT‐2 + T‐2 toxins on F. langsethiae DNA concentration was highly significant (P < 0.001, r2 = 0.55). The results indicated that although F. langsethiae had no direct effect on crop yield, it may result in indirect economic losses where the grain can be rejected or downgraded as a result of intolerable levels of HT‐2 and T‐2 toxins, which are of human food and animal feed safety concern. The influence of cultural field practices on the infection and HT‐2 and T‐2 toxins accumulation in oats was not clear and warrants further studies to identify the sources of F. langsethiae inoculum and conditions favourable for infection and mycotoxin production.  相似文献   
7.
黑籽南瓜(Cucurbita ficifolia)是云南特有的具有高抗枯萎病遗传性状的瓜类种质资源。为鉴定黑籽南瓜中NBS-LRR类基因的抗病功能,该研究从其叶片中克隆了NBS类基因CfRFN2 (GenBank ID:MK618462),测序全长为4 303 bp,完整的编码框长度为4 092 bp,编码1 363个氨基酸残基,该基因注释为拟南芥抗病蛋白At4g27190类转录体X1的同源基因,含有1个NB-ARC和2个LRR结构域,属于具有信号肽的可溶性蛋白。核苷酸相似性分析显示,CfRFN2与其他瓜类NBS类基因相似性在87%~98%之间;系统进化树分析表明,CfRFN2蛋白和瓜类的其他NBS类抗病蛋白聚为一个分支,其中CfRFN2蛋白与中国南瓜和美洲南瓜的RPS2、印度南瓜的RPS2-like亲缘关系最近,其次是黄瓜的At4g27190和苦瓜的At4g27220,与甜瓜的Atg27190亲缘关系相对较远;组织表达特性分析表明,CfRFN2基因在黑籽南瓜叶片中表达量最高,其次是茎,而在果皮和根中表达量较低。该研究采用烟草脆裂病毒载体系统,构建了黑籽南瓜VIGS沉默载体pTRV2-CfRFN2,含沉默载体的农杆菌侵染黑籽南瓜幼苗后接种枯萎病菌,qRT-PCR检测表明,接种后2 d和4 d的转pTRV2-CfRFN2沉默组植株的CfRFN2基因表达量比接种后同时期的野生型植株显著降低(分别下降34.75%和98.27%),病情指数增加为野生型的1.32倍,初步证明黑籽南瓜CfRFN2基因具有抗枯萎病的功能,推测该基因可能在黑籽南瓜抗枯萎病防御过程中发挥着重要作用。该研究中NBS类基因CfRFN2的克隆和VIGS验证为黑籽南瓜更多优异基因的克隆和功能验证奠定了前期基础,也为发掘黑籽南瓜优异抗病基因和开展瓜类分子育种提供新信息。  相似文献   
8.
A study was carried out to determine Fusarium wilt distribution in Bambara nut farmers’ fields and its management using farm yard manure (FYM). Four villages in Busia County were purposively sampled for the study. The data generated were subjected to analysis of variance and treatment means separated by least significant difference test. Fusarium wilt incidence in the fields ranged from 14.63 to 43.56%. In the greenhouse, FYM reduced the disease incidence by 10.2% and severity by 9.5% on the black landrace and 1.9 and 12.8%, respectively, on the red landrace. In the field, FYM reduced disease incidence by 9.1% and severity by 6.9% on the black landrace and 10.4 and 10.4%, respectively, on the red landrace. Farm yard manure had the lowest area under disease progress curve irrespective of the landrace. The study confirmed the presence of the pathogen in the fields and the ability to manage the disease using FYM.  相似文献   
9.
Improving genetic resistance is a preferred method to manage Verticillium wilt of cotton and other hosts. Identifying host resistance is difficult because of the dearth of resistance genes against this pathogen. Previously, a novel candidate gene involved in Verticillium wilt resistance was identified by a genome-wide association study using a panel of Gossypium hirsutum accessions. In this study, we cloned the candidate resistance gene from cotton that encodes a protein sharing homology with the TIR-NBS-LRR receptor-like defence protein DSC1 in Arabidopsis thaliana (hereafter named GhDSC1). GhDSC1 expressed at higher levels in response to Verticillium wilt and jasmonic acid (JA) treatment in resistant cotton cultivars as compared to susceptible cultivars and its product was localized to nucleus. The transfer of GhDSC1 to Arabidopsis conferred Verticillium resistance in an A. thaliana dsc1 mutant. This resistance response was associated with reactive oxygen species (ROS) accumulation and increased expression of JA-signalling-related genes. Furthermore, the expression of GhDSC1 in response to Verticillium wilt and JA signalling in A. thaliana displayed expression patterns similar to GhCAMTA3 in cotton under identical conditions, suggesting a coordinated DSC1 and CAMTA3 response in A. thaliana to Verticillium wilt. Analyses of GhDSC1 sequence polymorphism revealed a single nucleotide polymorphism (SNP) difference between resistant and susceptible cotton accessions, within the P-loop motif encoded by GhDSC1. This SNP difference causes ineffective activation of defence response in susceptible cultivars. These results demonstrated that GhDSC1 confers Verticillium resistance in the model plant system of A. thaliana, and therefore represents a suitable candidate for the genetic engineering of Verticillium wilt resistance in cotton.  相似文献   
10.
《Fungal biology》2019,123(5):351-363
The overall goal of this study was to determine whether the genome of an important plant pathogen in Africa, Ceratocystis albifundus, is structured into subgenomic compartments, and if so, to establish how these compartments are distributed across the genome. For this purpose, the publicly available genome of C. albifundus was complemented with the genome sequences for four additional isolates using the Illumina HiSeq platform. In addition, a reference genome for one of the individuals was assembled using both PacBio and Illumina HiSeq technologies. Our results showed a high degree of synteny between the five genomes, although several regions lacked detectable long-range synteny. These regions were associated with the presence of accessory genes, lower genetic similarity, variation in read-map depth, as well as transposable elements and genes associated with host-pathogen interactions (e.g. effectors and CAZymes). Such patterns are regarded as hallmarks of accelerated evolution, particularly of accessory subgenomic compartments in fungal pathogens. Our findings thus showed that the genome of C. albifundus is made-up of core and accessory subgenomic compartments, which is an important step towards characterizing its pangenome. This study also highlights the value of comparative genomics for understanding mechanisms that may underly and influence the biology and evolution of pathogens.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号