首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17910篇
  免费   2408篇
  国内免费   2672篇
  2024年   13篇
  2023年   413篇
  2022年   267篇
  2021年   549篇
  2020年   763篇
  2019年   866篇
  2018年   729篇
  2017年   831篇
  2016年   762篇
  2015年   789篇
  2014年   792篇
  2013年   1079篇
  2012年   750篇
  2011年   800篇
  2010年   672篇
  2009年   937篇
  2008年   1021篇
  2007年   1200篇
  2006年   1051篇
  2005年   949篇
  2004年   853篇
  2003年   787篇
  2002年   698篇
  2001年   630篇
  2000年   550篇
  1999年   534篇
  1998年   508篇
  1997年   369篇
  1996年   343篇
  1995年   313篇
  1994年   244篇
  1993年   248篇
  1992年   243篇
  1991年   203篇
  1990年   189篇
  1989年   169篇
  1988年   137篇
  1987年   122篇
  1986年   104篇
  1985年   79篇
  1984年   90篇
  1983年   54篇
  1982年   72篇
  1981年   47篇
  1980年   38篇
  1979年   29篇
  1978年   38篇
  1977年   17篇
  1976年   13篇
  1973年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
Spatial sorting is a process that can contribute to microevolutionary change by assembling phenotypes through space, owing to nonrandom dispersal. Here we first build upon and develop the “neutral” version of the spatial sorting hypothesis by arguing that in systems that are not characterized by repeated range expansions, the evolutionary effects of variation in dispersal capacity and assortative mating might not be independent of but interact with natural selection. In addition to generating assortative mating, variation in dispersal capacity together with spatial and temporal variation in quality of spawning area is likely to influence both reproductive success and survival of spawning migrating individuals, and this will contribute to the evolution of dispersal‐enhancing traits. Next, we use a comparative approach to examine whether differences in spawning migration distance among 18 species of freshwater Anguilla eels have evolved in tandem with two dispersal‐favoring traits. In our analyses, we use information on spawning migration distance, body length, and vertebral number that was obtained from the literature, and a published whole mitochondrial DNA‐based phylogeny. Results from comparative analysis of independent contrasts showed that macroevolutionary shifts in body length throughout the phylogeny have been associated with concomitant shifts in spawning migration. Shifts in migration distance were not associated with shifts in number of vertebrae. These findings are consistent with the hypothesis that spatial sorting has contributed to the evolution of more elongated bodies in species with longer spawning migration distances, or resulted in evolution of longer migration distances in species with larger body size. This novel demonstration is important in that it expands the list of ecological settings and hierarchical levels of biological organization for which the spatial sorting hypothesis seems to have predictive power.  相似文献   
3.
4.
Hermes copper (Lycaena [Hermelycaena] hermes: Lycaenidae) is a rare species endemic to the coastal sage scrub in and around San Diego, CA, USA. This species has experienced substantial habitat loss due to urbanization and recent wildfires. We present data collected from field surveys conducted in 2003 and 2004. The flight season lasted 1–2 months with densities varying among sites and years. We observed adults most often near California buckwheat (Eriogonum fasciculatum) plants and significantly more often on north and west sides of trails or roads. We compared the robustness and statistical power of three indices of population size from the modified Pollard Walk surveys. We recorded the largest single-day count (Max Count), the cumulative number observed throughout the flight season (Pollard) and an estimate based on a four-parameter model (INCA: Insect Count Analyzer). The Pollard estimate was the most robust to sampling error and the most powerful at detecting population changes in simulated data. Improved monitoring techniques, both field methods and statistical estimation, are critical to determine the conservation status of rare butterflies like Hermes copper.  相似文献   
5.
Through the continuing accumulation of fossil evidence, it is clear that the avifauna of the Hawaiian Islands underwent a large‐scale extinction event around the time of Polynesian arrival. A second wave of extinctions since European colonization has further altered this unique avifauna. Here I present the first systematic analysis of the factors characterizing the species that went extinct in each time period and those that survived in order to provide a clearer picture of the possible causal mechanisms. These analyses were based on mean body size, dietary and ecological information and phylogenetic lineage of all known indigenous, non‐migratory land and freshwater bird species of the five largest Hawaiian Islands. Extinct species were divided into ‘prehistoric’ and ‘historic’ extinction categories based on the timing of their last occurrence. A model of fossil preservation bias was also incorporated. I used regression trees to predict probability of prehistoric and historic extinction based on ecological variables. Prehistoric extinctions showed a strong bias toward larger body sizes and flightless, ground‐nesting species, even after accounting for preservation bias. Many small, specialized species, mostly granivores and frugivores, also disappeared, implicating a wide suite of human impacts including destruction of dry forest habitat. In contrast, the highest extinction rates in the historic period were in medium‐sized nectarivorous and insectivorous species. These differences result from different causal mechanisms underlying the two waves of extinction.  相似文献   
6.
Although a number of recent studies have demonstrated biotic homogenization, these have mainly focused on larger spatial scales. Homogenizing effects are equally important at finer resolutions, e.g. through increasing similarity between habitats, which may result in a simplification of ecosystem structure and function. One major cause of homogenization is the expanding ranges of alien species, although it is not clear whether they are inherently homogenizing at smaller scales. We therefore assessed whether the alien flora is less complex across habitats than the resident native flora of Mediterranean Islands. From a regional data base, we examined floristic lists for between‐habitat taxonomic and functional similarity, and within‐habitat functional diversity, using resampled data sets to control for sample size biases. Aliens and natives showed equivalent complexity in most respects. At the taxonomic level, between‐island and between‐habitat similarities were almost identical, and when ecosystem function was measured by a functional group classification system, this was also true of between‐habitat similarities and within‐habitat diversities. When ecosystem function was measured using Grime's CSR classification, aliens were found to be more functionally homogenous between‐habitats and less functionally diverse within habitats. However, since the CSR profiles of aliens and natives differed, simplification is not inevitable due to ecological segregation of the two floras (aliens tend to be recruited to disturbed habitats rather than displacing natives). One deficiency is a lack of large scale species abundance data. A simple simulation exercise indicated that this is likely to lead to substantial overestimation of true levels of similarity, although would only influence the comparison between aliens and natives if they have different abundance distribution curves. The results indicate that alien floras are not intrinsically more simple than natives, but a higher proportion of competitive strategists among aliens may still cause small‐scale homogenization as these include many strong competitors that are likely to dominate communities.  相似文献   
7.
The alteration of natural tree species composition is defined as the deviation of the current tree species composition from that of the natural state. It can be used as a measure of human influence on forest vegetation, and thus as an indicator of the naturalness of forest vegetation. The aim of the study was to develop a standard procedure for estimating the alteration of natural tree species composition, to explain factors driving alteration and to examine its significance for susceptibility of forest stands to natural disturbances. The alteration of natural tree species composition was estimated for the Dinaric region (5556 km2, Slovenia) by the Robič Index of Dissimilarity (RID), ranging from 0 (completely natural) to 100 (completely altered). The index was calculated on the compartment level (24 ha each on average) with data on current and potential natural forest vegetation. The influence of human activities on tree species alteration was examined by using topographic and accessibility variables. The susceptibility of forest stands to natural disturbances was analysed with data on sanitary felling. In the study area, the natural tree species composition of forest stands is moderately preserved; the average value of RID was 50.05, ranging from 1.76 to 100, and the coefficient of variation was 0.49. The alteration of the natural tree species composition of forest stands is primarily the result of forest management and past land use, conditioned either by topography or accessibility of forests. The degree of alteration of tree species composition decreased along the gradients of rockiness, inclination and elevation. A greater degree of alteration appeared on the slopes of intermediate and south facing aspects than on north facing slopes, and in areas that were closer to the forest edge. A higher level of alteration significantly increases the susceptibility of forest stands to natural disturbances. The procedure represents a novel approach in modelling the alteration (naturalness) of tree species composition of forest vegetation. It is applicable at different spatial scales and fosters an understanding of the patterns of tree species composition under the influence of human activity across forest landscapes.  相似文献   
8.
Ribosomal (r)RNA and rDNA have been golden molecular markers in microbial ecology. However, it remains poorly understood how ribotype copy number (CN)‐based characteristics are linked with diversity, abundance, and activity of protist populations and communities observed at organismal levels. Here, we applied a single‐cell approach to quantify ribotype CNs in two ciliate species reared at different temperatures. We found that in actively growing cells, the per‐cell rDNA and rRNA CNs scaled with cell volume (CV) to 0.44 and 0.58 powers, respectively. The modeled rDNA and rRNA concentrations thus appear to be much higher in smaller than in larger cells. The observed rRNA:rDNA ratio scaled with CV0.14. The maximum growth rate could be well predicted by a combination of per‐cell ribotype CN and temperature. Our empirical data and modeling on single‐cell ribotype scaling are in agreement with both the metabolic theory of ecology and the growth rate hypothesis, providing a quantitative framework for linking cellular rDNA and rRNA CNs with body size, growth (activity), and biomass stoichiometry. This study also demonstrates that the expression rate of rRNA genes is constrained by cell size, and favors biomass rather than abundance‐based interpretation of quantitative ribotype data in population and community ecology of protists.  相似文献   
9.
10.
Organisms often face a higher risk of local extinction in fragmented than in continuous habitat. However, whether populations are affected by reduced size and connectivity of the habitat or by changes in habitat quality in fragmented landscapes remains poorly investigated. We studied the regional distribution and microhabitat selection of the lacertid lizard Psammodromus algirus in a fragmented landscape where the existence of deciduous and evergreen woodlands brought about variation in habitat quality. Lizards never occupied any fragment smaller than 0.5 ha. However, above that limit fragment size no longer predicted lizard occurrence, which was explained by woodland type instead, with lizards being more frequently found in deciduous than in evergreen woodlands. Lizards selected microhabitats that had structural features favouring thermoregulation, foraging and predator avoidance, and we identified better conditions for thermoregulation and food acquisition in deciduous than in evergreen woodlands. Our results support the idea that variation in habitat quality can sometimes override the effect of habitat fragmentation on animal populations. We consider the implications of our study for the conservation of Mediterranean lizards, discussing our results in a broader context framed by previous studies conducted in nearby areas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号