首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   268篇
  国内免费   8篇
  完全免费   22篇
  2015年   4篇
  2014年   4篇
  2013年   6篇
  2012年   3篇
  2011年   2篇
  2010年   6篇
  2009年   14篇
  2008年   10篇
  2007年   19篇
  2006年   13篇
  2005年   21篇
  2004年   12篇
  2003年   12篇
  2002年   9篇
  2001年   8篇
  2000年   18篇
  1999年   11篇
  1998年   13篇
  1997年   11篇
  1996年   8篇
  1995年   8篇
  1994年   3篇
  1993年   10篇
  1992年   9篇
  1991年   10篇
  1990年   9篇
  1989年   7篇
  1988年   7篇
  1987年   3篇
  1986年   3篇
  1985年   1篇
  1984年   8篇
  1983年   1篇
  1982年   4篇
  1981年   2篇
  1980年   3篇
  1979年   5篇
  1977年   1篇
排序方式: 共有298条查询结果,搜索用时 31 毫秒
1.
Long-Term Nitrogen Additions and Nitrogen Saturation in Two Temperate Forests   总被引:50,自引:6,他引:44  
This article reports responses of two different forest ecosystems to 9 years (1988–96) of chronic nitrogen (N) additions at the Harvard Forest, Petersham, Massachusetts. Ammonium nitrate (NH4NO3) was applied to a pine plantation and a native deciduous broad-leaved (hardwood) forest in six equal monthly doses (May–September) at four rates: control (no fertilizer addition), low N (5 g N m-2 y-1), high N (15 g N m-2 y-1), and low N + sulfur (5 g N m-2 y-1 plus 7.4 g S m-2 y-1). Measurements were made of net N mineralization, net nitrification, N retention, wood production, foliar N content and litter production, soil C and N content, and concentrations of dissolved organic carbon (DOC) and nitrogen (DON) in soil water. In the pine stand, nitrate losses were measured after the first year of additions (1989) in the high N plot and increased again in 1995 and 1996. The hardwood stand showed no significant increases in nitrate leaching until 1995 (high N only), with further increases in 1996. Overall N retention efficiency (percentage of added N retained) over the 9-year period was 97–100% in the control and low N plots of both stands, 96% in the hardwood high N plot, and 85% in the pine high N plot. Storage in aboveground biomass, fine roots, and soil extractable pools accounted for only 16–32% of the added N retained in the amended plots, suggesting that the one major unmeasured pool, soil organic matter, contains the remaining 68–84%. Short-term redistribution of 15N tracer at natural abundance levels showed similar division between plant and soil pools. Direct measurements of changes in total soil C and N pools were inconclusive due to high variation in both stands. Woody biomass production increased in the hardwood high N plot but was significantly reduced in the pine high N plot, relative to controls. A drought-induced increase in foliar litterfall in the pine stand in 1995 is one possible factor leading to a measured increase in N mineralization, nitrification, and nitrate loss in the pine high N plot in 1996. Received 2 April 1999; Accepted 29 October 1999.  相似文献
2.
3.
Summary PnET is a simple, lumped-parameter, monthlytime-step model of carbon and water balances of forests built on two principal relationships: 1) maximum photosynthetic rate is a function of foliar nitrogen concentration, and 2) stomatal conductance is a function of realized photosynthetic rate. Monthyly leaf area display and carbon and water balances are predicted by combining these with standard equations describing light attenuation in canopies and photosynthetic response to diminishing radiation intensity, along with effects of soil water stress and vapor pressure deficit (VPD). PnET has been validated against field data from 10 well-studied temperate and boreal forest ecosystems, supporting our central hypothesis that aggregation of climatic data to the monthly scale and biological data such as foliar characteristics to the ecosystem level does not cause a significant loss of information relative to long-term, mean ecosystem responses. Sensitivity analyses reveal a diversity of responses among systems to identical alterations in climatic drivers. This suggests that great care should be used in developing generalizations as to how forests will respond to a changing climate. Also critical is the degree to which the temperature responses of photosynthesis and respiration might acclimate to changes in mean temperatures at decadal time scales. An extreme climate change simulation (+3° C maximum temperature, –25% precipitation with no change in minimum temperature or radiation, direct effects of increased atmospheric CO2 ignored) suggests that major increases in water stress, and reductions in biomass production (net carbon gain) and water yield would follow such a change.  相似文献
4.
荆条、山杏、辽东栎、北京丁香、大叶白蜡、核桃楸等6种植物在不同光照条件下的气孔导度,不同生境下叶片形态参数和叶片解剖特征进行了研究。扫描电子显微镜图片显示这片植物的气孔全着生在远轴面,气孔密度大小是:辽东栎〉山杏〉北京丁香〉核桃楸〉大叶白蜡,方差分析结果显示这5种植物叶片上气孔密度存在极显著差异,且叶片外表微观上差异比较明显。生境不仅影响叶片的气孔密度,而且也导气孔导度的差异,全光照条件下,山杏、  相似文献
5.
6.
中国猕猴桃属植物叶表皮毛策形态特征及数量分类分析   总被引:11,自引:0,他引:11  
选取国产猕猴桃35个分类群的代表植株,应用光学显微对其新鲜叶表皮毛的微形态特征,形体大小、细胞结构、分布和密度等多态性状和数量性状进行了观察和测量,该属植物的叶表皮毛微形态特征可归纳为6个类型:1)单细胞毛;2)单列多细胞毛,每形单列毛、泡状单列毛、扭曲毛、直壁单列毛、曲壁单列毛;3)多列渐尖毛和急尖毛,包括多列曲壁渐尖毛和急尖毛,多列直壁渐尖毛和急尖毛;4)多列粗毛,包括柱状毛,多列渐尖粗毛,多  相似文献
7.
利用光学显微镜和体视显微镜对卷柏科Selaginellaceae中国产29种和泰国产1种植物的叶形态进行了宏观和微观观察。结果表明卷柏科植物在叶形态学方面表现出较高的一致性。(1)叶多为二形, 罕为一形, 无叶柄, 叶二形者侧叶多大于中叶, 外展或斜上, 中叶贴生于腹面茎上, 交互覆瓦状排成4列, 叶一形者则在茎上作螺旋状排列。(2)侧叶与中叶上表皮细胞形态相似, 近等径方形或长方形, 垂周壁平直、弓形或波状; 侧叶与中叶下表皮细胞形态也相似, 长方形或长条形, 垂周壁波状。(3)气孔类型为无规则型或放射型, 气孔多分布于中叶上表皮和侧叶下表皮中脉处。研究发现, 叶外形、叶表皮细胞形态及气孔分布特征等为中国卷柏科植物种间分类提供了重要的参考依据。 研究的有关种类可以依据下面这些特征进行分类: (1)叶为一形叶或二形; (2)叶在枝上着生为螺旋状或成对交互排列; (3)叶表皮细胞垂周壁为平直、弓形、深波状或浅波状; (4)叶上、下表皮细胞同形或异形; (5)气孔为无规则型或放射型; 以及(6)气孔在中叶和侧叶的上、下表皮上的分布等特征。  相似文献
8.
尾叶桉叶片氮磷钾钙镁硼元素营养诊断指标   总被引:11,自引:4,他引:7       下载免费PDF全文
采用临界值法对尾叶桉幼林材积生长进行叶片营养诊断,试验结果表明,氮,磷,钾,钙,镁和硼等营养元素的临界浓度分别为15.3g/kg,1.2g/kg,4.2g/kg,16.1g/kg,2.5g/kg和0.019g/kg;最适浓度范围分别为15.3-18.1g/kg,1.2-1.7g/kg,4.2-5.6g/kg,16.1-19.8g/kg,2.5-3.0g/kg和0.019-0.031g/kg,而对树高生长进行营养诊断时,上选结果稍微有些变化,试验还得到各营养元素比值的临界值和最适范围。  相似文献
9.
植物附生微生物与叶部病害生物防治研究进展   总被引:11,自引:0,他引:11  
单卫星 《生态学杂志》1992,11(1):48-53,74
人们早已发现绿色植物叶面(phylloplane)栖居有大量微生物。在一百多年前微生物学家就从植物叶面分离到许多真菌和细菌。1910年Potter首先证实,叶面附生微生物在干扰真菌引起的叶部病害中起着重要作用。至本世纪上半叶,叶面微生物仍为人们所忽视。相反,在这期间土壤微生物得到很大发展,在土传植物病原菌生物防治研究方法上取得了很大进展,为后来的植物叶部病害生物防  相似文献
10.
The aim of this study was to examine how shifts in soil nutrient availability along a soil chronosequence affected temperate rainforest vegetation. Soil nutrient availability, woody plant diversity, composition and structure, and woody species leaf and litter nutrient concentrations were quantified along the sequence through ecosystem progression and retrogression. In this super-wet, high leaching environment, the chronosequence exhibited rapid soil development and decline within 120,000 years. There were strong gradients of soil pH, N, P and C, and these had a profound effect on vegetation. N:Pleaf increased along the chronosequence as vegetation shifted from being N- to P- limited. However, high N:Pleaf ratios, which indicate P-limitation, were obtained on soils with both high and low soil P availability. This was because the high N-inputs from an N-fixing shrub caused vegetation to be P-limited in spite of high soil P availability. Woody species nutrient resorption increased with site age, as availability of N and P declined. Soil P declined 8-fold along the sequence and P resorption proficiency decreased from 0.07 to 0.01%, correspondingly. N resorption proficiency decreased from 1.54 to 0.26%, corresponding to shifts in mineralisable N. Woody plant species richness, vegetation cover and tree height increased through ecosystem progression and then declined. During retrogression, the forest became shorter, more open and less diverse, and there were compositional shifts towards stress-tolerant species. Conifers (of the Podocarpaceae) were the only group to increase in richness along the sequence. Conifers maintained a lower N:Pleaf than other groups, suggesting superior acquisition of P on poor soils. In conclusion, there was evidence that P limitation and retrogressive forests developed on old soils, but N limitation on very young soils was not apparent because of inputs from an abundant N-fixing shrub.Electronic Supplementary Material Supplementary material is available in the online version of this article at .  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号