首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   7篇
  2023年   2篇
  2022年   1篇
  2021年   2篇
  2020年   4篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   6篇
  2012年   4篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   3篇
  2006年   3篇
  2005年   4篇
  2004年   2篇
  2003年   2篇
  2002年   5篇
  2001年   2篇
  2000年   3篇
  1999年   4篇
  1998年   4篇
  1997年   3篇
  1996年   3篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1989年   1篇
  1984年   2篇
排序方式: 共有84条查询结果,搜索用时 15 毫秒
1.
Functions of passage cells in the endodermis and exodermis of roots   总被引:8,自引:0,他引:8  
Passage cells frequently occur in the endodermis and exodermis but are not ubiquitous in either layer. Passage cells occur in the form of short cells in the dimorphic type of exodermis. In both layers, Casparian bands are formed in all cells, but the subsequent development of suberin lamellae and thick, cellulosic walls are delayed or absent in the passage cells. Available evidence suggests that passage cells of the endodermis are important for the transfer of calcium and magnesium into the stele and thus into the transpiration stream. They become the only cells which present a plasmalemma surface to the soil solution (and are thus capable of ion uptake) when the epidermis and central cortex die. This occurs naturally in some herbaceous and woody species and is known to be promoted by drought. Most evidence indicates that the development of suberin lamellae in both the endodermis and exodermis increases the resistance of the root to the radial flow of water. Passage cells thus provide areas of low resistance for the movement of water, and the position of these cells in the endodermis (i.e., in close proximity to the xylem) is explained in terms of function. Exodermal passage cells have a cytoplasmic structure suggesting an active role in ion uptake. This may be related to the tendency of the epidermis to die, leaving the passage cells as the only ones with their membranes exposed to the soil solution. Passage cells in the exodermis attract endomycorrhizal fungi while those in the endodermis do not. It is clear that passage cells of the endodermis and exodermis play a variety of roles in the plant root system.  相似文献   
2.
The arrest of DNA synthesis and termination of cell division in basal meristematic cells as well as the resumption of these processes as related to the initiation of lateral root primordia (LRP) were studied in tissues of Triticum aestivumroots incubated with 3H-thymidine. All cells of the stelar parenchyma and cortex as well as most endodermal and pericycle cells left the mitotic cycle and ceased proliferative activity at the basal end of the meristem and at the beginning of the elongation zone. Some endodermal and pericycle cells started DNA synthesis in the basal part of the meristem and completed it later on during their elongation, but they did not divide. In the cells of these tissues, DNA synthesis resumed above the elongation zone, the cells being located much closer to the root tip than the first newly dividing cells. Thus, the initiation of LRP started much closer to the root tip than it was previously believed judging from the distance of the first dividing pericycle cells from the root tip. DNA synthesizing and dividing cells first appeared in the stelar parenchyma, then, in the pericycle, and later, in the endodermis and cortex. It seems likely that a release from the inhibition of DNA synthesis allows the cells that completed mitotic cycle in the basal part of meristem in the G1phase to cease the proliferative arrest above the elongation zone and to continue their cycling. The location of the first DNA synthesizing and dividing cells in the stelar parenchyma and pericycle did not strictly correspond to the LRP initiation sites and proximity to the xylem or phloem poles. This indicates that LRP initiation results from the resumption of DNA synthesis in all pericycle and stelar parenchyma cells that retained the ability to synthesize DNA and occurs only in the pericycle sector situated between the two tracheal protoxylem strands, all cells of which terminated their mitotic cycles in the G1phase.  相似文献   
3.
Distribution and Toxic Effects of Cadmium and Lead on Maize Roots   总被引:1,自引:0,他引:1  
Two-day-old seedlings of maize (Zea mays L.) were incubated on Cd and Pb nitrate solutions at the concentrations that inhibited root growth approximately by 50% after two-day-long incubation (LC50; 10–4 and 10–3 M, respectively) or completely terminated growth of the primary root after one-day-long incubation (LC; 5 × 10–4 and 10–2 M, respectively). Cd and Pb contents were measured using an anodic inversion voltammetric technique in a flow injection system and a histochemical method. At LC50, Cd and Pb were discerned, by histochemical techniques, in all root apical tissues, whereas in the root hair zone, the heavy metals were primarily accumulated in the apoplast of the rhizodermis and cortex and to a lesser extent, in the vascular tissues and parenchyma cells surrounding the metaxylem vessels. Insignificant accumulation of Cd and Pb in the pericycle probably explains why root branching was tolerant to these agents. At LC, Cd and Pb were found in the apoplast of all root tissues, in accordance with the practically complete inhibition of root growth and branching. Irrespectively of Cd and Pb concentrations in the external solution, the metal contents in the root apex exceeded those in the basal region. Procion dyes were used to assess cell death inflicted by Cd and Pb. At LC, the root cap and meristematic cells perished, together with the rhizodermal cells and the outer cortical cells of the root apex, whereas only the rhizodermal cells in the root apical region died at LC50. The evidence that Cd and Pb cross the endodermal barrier at LC presumes that, at lower metal concentrations, the Casparian strip and plasmalemma of the endodermis regulate the transport of these metals into the central cylinder. The authors conclude that the identical barriers control Cd and Pb transport in root tissues.  相似文献   
4.
The importance of aquaporins for root hydraulic conductance (LP) was investigated along roots of the desert succulent Agave deserti in wet, dry and rewetted soil. Water channel activity was inferred from HgCl2‐induced reductions of LP that were reversible by 2‐mercaptoethanol. Under wet conditions, HgCl2 reduced LP for the distal root region by 50% and for the root region near the shoot base by 36% but did not affect LP for the mid‐root region. For all root regions, LP decreased by 30–60% during 10 d in drying soil and was not further reduced by HgCl2. After soil rewetting, LP increased to pre‐drying values and was again reduced by HgCl2 for the distal and the basal root regions but not the mid‐root region. For the distal region, water channels in the epidermis/exodermis made a disproportionately large contribution to radial hydraulic conductance of the intact segment; for the basal region, water channel activity was highest in the cortex and endodermis. The role of water channels was greatest in tissues in which cells were metabolically active both in the distal root region, where new apical growth occurs in wet soil, and in the basal region, which is the most likely root region to intercept light rainfall.  相似文献   
5.

Background and Aims

Mercury (Hg) is an extremely toxic pollutant, especially in the form of methylmercury (MeHg), whereas selenium (Se) is an essential trace element in the human diet. This study aimed to ascertain whether addition of Se can produce rice with enriched Se and lowered Hg content when growing in Hg-contaminated paddy fields and, if so, to determine the possible mechanisms behind these effects.

Methods

Two cultivars of rice (Oryza sativa, japonica and indica) were grown in either hydroponic solutions or soil rhizobags with different Se and Hg treatments. Concentrations of total Hg, MeHg and Se were determined in the roots, shoots and brown rice, together with Hg uptake kinetics and Hg bioavailability in the soil. Root anatonmy was also studied.

Key Results

The high Se treatment (5 μg g–1) significantly increased brown rice yield by 48 % and total Se content by 2·8-fold, and decreased total Hg and MeHg by 47 and 55 %, respectively, compared with the control treatments. The high Se treatment also markedly reduced ‘water-soluble’ Hg and MeHg concentrations in the rhizosphere soil, decreased the uptake capacity of Hg by roots and enhanced the development of apoplastic barriers in the root endodermis.

Conclusions

Addition of Se to Hg-contaminated soil can help produce brown rice that is simultaneously enriched in Se and contains less total Hg and MeHg. The lowered accumulation of total Hg and MeHg appears to be the result of reduced bioavailability of Hg and production of MeHg in the rhizosphere, suppression of uptake of Hg into the root cells and an enhancement of the development of apoplastic barriers in the endodermis of the roots.  相似文献   
6.
Background and Aims Contractile roots are known and studied mainly in connection with the process of shrinkage of their basal parts, which acts to pull the shoot of the plant deeper into the ground. Previous studies have shown that the specific structure of these roots results in more intensive water uptake at the base, which is in contrast to regular root types. The purpose of this study was to find out whether the basal parts of contractile roots are also more active in translocation of cadmium to the shoot.Methods Plants of the South African ornamental species Tritonia gladiolaris were cultivated in vitro for 2 months, at which point they possessed well-developed contractile roots. They were then transferred to Petri dishes with horizontally separated compartments of agar containing 50 µmol Cd(NO3)2 in the region of the root base or the root apex. Seedlings of 4-d-old maize (Zea mays) plants, which do not possess contractile roots, were also transferred to similar Petri dishes. The concentrations of Cd in the leaves of the plants were compared after 10 d of cultivation. Anatomical analyses of Tritonia roots were performed using appropriately stained freehand cross-sections.Key Results The process of contraction required specific anatomical adaptation of the root base in Tritonia, with less lignified and less suberized tissues in comparison with the subapical part of the root. These unusual developmental characteristics were accompanied by more intensive translocation of Cd ions from the basal part of contractile roots to the leaves than from the apical–subapical root parts. The opposite effects were seen in the non-contractile roots of maize, with higher uptake and transport by the apical parts of the root and lower uptake and transport by the basal part.Conclusions The specific characteristics of contractile roots may have a significant impact on the uptake of ions, including toxic metals from the soil surface layers. This may be important for plant nutrition, for example in the uptake of nutrients from upper soil layers, which are richer in humus in otherwise nutrient-poor soils, and also has implications for the uptake of surface-soil pollutants.  相似文献   
7.
Using an insoluble inorganic salt precipitation technique, the permeability of cell walls and especially of endodermal Casparian bands (CBs) for ions was tested in young roots of corn (Zea mays) and rice (Oryza sativa). The test was based on suction of either 100 µm CuSO4 or 200 µm K4[Fe(CN)6] into the root from its medium using a pump (excised roots) or transpirational stream (intact seedlings), and subsequent perfusion of xylem of those root segments with the opposite salt component, which resulted in precipitation of insoluble brown crystals of copper ferrocyanide. Under suction, Cu2+ could cross the endodermis apoplastically in both plant species (although at low rates) developing brown salt precipitates in cell walls of early metaxylem and in the region between CBs and functioning metaxylem vessels. Hence, at least Cu2+ did cross the endodermis dragged along with the water. The results suggested that CBs were not perfect barriers to apoplastic ion fluxes. In contrast, ferrocyanide ions failed to cross the mature endodermis of both corn and rice at detectable amounts. The concentration limit of apoplastic copper was 0.8 µm at a perfusion with 200 µm K4[Fe(CN)6]. Asymmetric development of precipitates suggested that the cation, Cu2+, moved faster than the anion, [Fe(CN)6]4–, through cell walls including CBs. Using Chara cell wall preparations (‘ghosts’) as a model system, it was observed that, different from Cu2+, ferrocyanide ions remained inside wall-tubes suggesting a substantially lower permeability of the latter which agreed with the finding of an asymmetric development of precipitates. In both corn and rice roots, there was a significant apoplastic flux of ions in regions where laterals penetrated the endodermis. Overall, the results show that the permeability of CBs to ions is not zero. CBs do not represent a perfect barrier for ions, as is usually thought. The permeability of CBs may vary depending on growth conditions which are known to affect the intensity of formation of bands.  相似文献   
8.
Zhou Q  Wang L  Cai X  Wang D  Hua X  Qu L  Lin J  Chen T 《Journal of plant physiology》2011,168(11):1249-1255
Casparian bands of endodermis and exodermis play crucial roles in blocking apoplastic movement of ions and water into the stele of roots through the cortex. These apoplastic barriers differ considerably in structure and function along the developing root. The present study assessed net Na+ fluxes in anatomically distinct root zones of rice seedlings and analyzed parts of individual roots showing different Na+ uptake. The results indicated that anatomically distinct root zones contributed differently to the overall uptake of Na+. The average Na+ uptake in root zones in which Casparian bands of the endo- and exo-dermis were interrupted by initiating lateral root primordia (root zone III) was significantly greater than that at the root apex, where Casparian bands were not yet formed (root zone I), or in the region where endo- and exo-dermis with Casparian bands were well developed (root zone II). The measurement of net Na+ fluxes using a non-invasive scanning ion-selective electrode technique (SIET) demonstrated that net Na+ flux varied significantly in different positions along developing rice roots, and a net Na+ influx was obvious at the base of young lateral root primordia. Since sodium fluxes changed significantly along developing roots of rice seedlings, we suggest that the significantly distinct net Na+ flux profile may be attributed to different apoplastic permeability due to lateral root primordia development for non-selective apoplastic bypass of ions along the apoplast.  相似文献   
9.
Sodium exclusion from leaves is an important mechanism for salt tolerance in durum wheat. To characterize possible control points for Na(+) exclusion, quantitative cryo-analytical scanning electron microscopy was used to determine cell-specific ion profiles across roots of two durum wheat genotypes with contrasting rates of Na(+) transport from root to shoot grown in 50 mm NaCl. The Na(+) concentration in Line 149 (low transport genotype) declined across the cortex, being highest in the epidermal and sub-epidermal cells (48 mm) and lowest in the inner cortical cells (22 mm). Na(+) was high in the pericycle (85 mm) and low in the xylem parenchyma (34 mm). The Na(+) profile in Tamaroi (high transport genotype) had a similar trend but with a high concentration (130 mm) in the xylem parenchyma. The K(+) profiles were generally inverse to those of Na(+). Chloride was only detected in the epidermis. These data suggest that the epidermal and cortical cells removed most of the Na(+) and Cl(-) from the transpiration stream before it reached the endodermis, and that the endodermis is not the control point for salt uptake by the plant. The pericycle as well as the xylem parenchyma may be important in the control of net Na(+) loading of the xylem.  相似文献   
10.
Using epifluorescent and histochemical techniques, we examined anatomical differences in the shoot organs of Typha latifolia, T. angustifolia and T. glauca. The leaf lamina of T. latifolia and T. glauca had enlarged epidermal cells and a thickened cuticle above the subepidermal vascular bundles; that of T. angustifolia lacked these characteristics. Leaf sheaths were similar among the species and all lacked the epidermal thickenings found in the lamina. The fertile stems had typical scattered vascular bundles with a band of fibres that was most prominent in T. glauca. The sterile stems were only 1 cm in length and contained a multiseriate hypodermis and a uniseriate endodermis over part of their length. The rhizomes were similar except for a pronounced band of fibres surrounding the central core in T. angustifolia. The rhizome was also characterized by an outer cortical region with a large multiseriate hypodermis/exodermis and a uniseriate endodermis with Casparian bands, suberin lamellae and secondarily thickened walls.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号