首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   329篇
  免费   27篇
  国内免费   13篇
  2024年   1篇
  2023年   2篇
  2022年   1篇
  2021年   8篇
  2020年   12篇
  2019年   11篇
  2018年   9篇
  2017年   8篇
  2016年   15篇
  2015年   15篇
  2014年   19篇
  2013年   25篇
  2012年   13篇
  2011年   10篇
  2010年   10篇
  2009年   13篇
  2008年   14篇
  2007年   12篇
  2006年   17篇
  2005年   15篇
  2004年   15篇
  2003年   11篇
  2002年   13篇
  2001年   11篇
  2000年   7篇
  1999年   7篇
  1998年   12篇
  1997年   5篇
  1996年   3篇
  1995年   3篇
  1994年   3篇
  1993年   5篇
  1992年   6篇
  1991年   5篇
  1990年   9篇
  1988年   5篇
  1987年   2篇
  1986年   4篇
  1985年   4篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1981年   3篇
排序方式: 共有369条查询结果,搜索用时 15 毫秒
1.
The water relations of shoots of young jack pine (Pinus banksiana Lamb.) seedlings were examined 6 and 15 weeks after the initiation of four different dynamic nitrogen (N) treatments using a pressure-volume analysis. The N treatments produced a wide range of needle N concentrations from 12 to 32 mg g?1 dry mass and a 10-fold difference in total dry mass at 15 weeks. Osmotic potential at full turgor did not change over the range of needle N concentrations observed. Osmotic potential at turgor-loss point, however, declined as N concentrations decreased, indicating an increased ability of N-deficient jack pine plants to maintain turgor. The increase could be attributed largely to an increase in cell wall elasticity, suggesting that elasticity changes may be a common, significant adaptation of plants to environmental stresses. Dry mass per unit saturated water almost doubled as needle N level dropped from 32 to 12 mg g?1 and was inversely correlated to the bulk modulus of elasticity. This suggests that cell wall elasticity is determined more by the nature of its cross-linking matrix than by the total amount of cell wall material present. Developmental change was evident in the response of some water relation variables to N limitation.  相似文献   
2.
Membrane orientation induced by an alternating electric field has been examined for the l-enantiomer and racemic dipalmitoylphosphatidylcholine (DPPC) bilayers. The orientation effect was measured by bending curvature of hairpin-like deformation of the multilamellar cylindrical tubes with varying field-strength, frequency and tube size. It has been observed that both l- and dl-DPPC tubes are similar in the profiles of field-strength dependence and frequency dependence on the curvature deformation, but different in the deformed curvatures. dl-DPPC tubes deform largely as compared with l-DPPC tubes. The square of the deformed curvature of dl-DPPC tubes is larger than that of l-DPPC by about 37% on average. The result indicates that the racemic membrane is responsive to the electric field as compared with the l-enantiomer membrane. This suggests that a hybrid arrangement of head groups of the racemic lipid leads an effective response of the membrane due to the head group orientation.  相似文献   
3.
Lipids in biological membrane fusion   总被引:8,自引:0,他引:8  
The results reviewed suggest that membrane fusion in diverse biological fusion reactions involves formation of some specific intermediates: stalks and pores. Energy of these intermediates and, consequently, the rate and extent of fusion depend on the propensity of the corresponding monolayers of membranes to bend in the required directions.Proteins and peptides can control the bending energy of membrane monolayers in a number of ways. Monolayer lipid composition may be altered by different phospholipases [50, 85, 90], flipases and translocases [4, 50]. Proteins and peptides can change monolayer spontaneous curvature or hydrophobic void energy by direct interaction with membrane lipids [20, 32, 111]. Proteins may also provide some barriers for lipid diffusion in the plane of the monolayer [83, 141]. If diffusion of lipids at some specific membrane sites (e.g., in the vicinity of fusion protein) is somehow hindered, the energy of the bent fusion intermediates would reflect the elastic properties of these particular sites rather than the spontaneous curvature of the whole monolayers. Proteins may deform membranes while bringing them locally into close contact. The alteration of the geometric (external) curvature will certainly change the elastic energy of the initial state and, thus affect the energetic barriers of the formation of the intermediates [143]. In addition, the area and the energy of the stalk can be reduced by preliminary bending of the contacting membranes [111]. The possible effects of proteins and polymers on local elastic properties and local shapes of the membranes have been recently analyzed [22, 39, 45, 63]. These studies may provide a good basis for future development of theoretical models of protein-mediated fusion.  相似文献   
4.
Osteoblasts are sensitive to altered gravity conditions, displaying changes in RNA and protein expression, proliferation, and differentiation; however, the effect of hypergravity on the mechanical properties of osteoblasts remains unclear. In this study, atomic force microscopy (AFM) was used to evaluate the effect of hypergravity on the elasticity of osteoblasts. We demonstrate that a continuous hypergravitational environment increased the elasticity of the cytoplasm, but not the nuclei zone, of MC3T3-E1 osteoblasts. Actin filaments, but not microtubules, dominated in the increased elasticity. These findings provide new insights on cellular gravity-sensing mechanisms.  相似文献   
5.
In total hip arthroplasty and particularly in revision surgery, computer assisted pre-operative prediction of the best possible anchorage strategy for implant fixation would be a great help to the surgeon. Computer simulation relies on validated numerical models. In the current study, three density–elasticity relationships (No. 1–3) from the literature for inhomogeneous material parameter assignment from CT data in automated finite element (FE) modeling of long bones were evaluated for their suitability for FE modeling of human pelvic bone. Numerical modal analysis was conducted on 10 FE models of hemipelvic bone specimens and compared to the gold standard provided by experimental modal analysis results from a previous in-vitro study on the same specimens. Overall, calculated resonance frequencies came out lower than measured values. Magnitude of mean relative deviation of numerical resonance frequencies with regard to measured values is lowest for the density–elasticity relationship No. 3 (−15.9%) and considerably higher for both density–elasticity relationships No. 1 (−41.1%) and No. 2 (−45.0%). Mean MAC values over all specimens amount to 77.8% (No. 1), 78.5% (No. 2), and 83.0% (No. 3). MAC results show, that mode shapes are only slightly influenced by material distribution. Calculated resonance frequencies are generally lower than measured values, which indicates, that numerical models lack stiffness. Even when using the best suited (No. 3) out of three investigated density–elasticity relationships, in FE modeling of pelvic bone a considerable underestimation of model stiffness has to be taken into account.  相似文献   
6.
The first part of this review on entropic elastic processes in protein mechanisms (Urry, 1988) demonstrated with the polypentapeptide of elastin (Val1-Pro2-Gly3-Val4-Gly5)n that elastic structure develops as the result of an inverse temperature transition and that entropic elasticity is due to internal chain dynamics in a regular nonrandom structure. This demonstration is contrary to the pervasive perspective of entropic protein elasticity of the past three decades wherein a network of random chains has been considered the necessary structural consequence of the occurrence of dominantly entropic elastomeric force. That this is not the case provides a new opportunity for understanding the occurrence and role of entropic elastic processes in protein mechanisms. Entropic elastic processes are considered in two classes: passive and active. The development of elastomeric force on deformation is class I (passive) and the development of elastomeric force as the result of a chemical process shifting the temperature of a transition is class II (active). Examples of class I are elastin, the elastic filament of muscle, elastic force changes in enzyme catalysis resulting from binding processes and resulting in the straining of a scissile bond, and in the turning on and off of channels due to changes in transmembrane potential. Demonstration of the consequences of elastomeric force developing as the result of an inverse temperature transition are seen in elastin, where elastic recoil is lost on oxidation, i.e., on decreasing the hydrophobicity of the chain and shifting the temperature for the development of elastomeric force to temperatures greater than physiological. This is relevant in general to loss of elasticity on aging and more specifically to the development of pulmonary emphysema. Since random chain networks are not the products of inverse temperature transitions and the temperature at which an inverse temperature transition occurs depends on the hydrophobicity of the polypeptide chain, it now becomes possible to consider chemical processes for turning elastomeric force on and off by reversibly changing the hydrophobicity of the polypeptide chain. This is herein called mechanochemical coupling of the first kind; this is the chemical modulation of the temperature for the transition from a less-ordered less elastic state to a more-ordered more elastic state. In the usual considerations to date, development of elastomeric force is the result of a standard transition from a more-ordered less elastic state to a less-ordered more elastic state. When this is chemically modulated, it is herein called mechanochemical coupling of the second kind. For elastin and the polypentapeptide of elastin, since entropic elastomeric force results on formation of a regular nonrandom structure and thermal randomization of chains results in loss of elastic modulus to levels of limited use in protein mechanisms, consideration of regular spiral-like structures rather than ramdom chain networks or random coils are proposed for mechanochemical coupling of the second kind. Chemical processes to effect mechanochemical coupling in biological systems are most obviously phosphorylation-dephosphorylation and changes in calcium ion activity but also changes in pH. These issues are considered in the events attending parturition in muscle contraction and in cell motility.  相似文献   
7.
Predicting whether, how, and to what degree communities recover from disturbance remain major challenges in ecology. To predict recovery of coral communities we applied field survey data of early recovery dynamics to a multi‐species integral projection model that captured key demographic processes driving coral population trajectories, notably density‐dependent larval recruitment. After testing model predictions against field observations, we updated the model to generate projections of future coral communities. Our results indicated that communities distributed across an island landscape followed different recovery trajectories but would reassemble to pre‐disturbed levels of coral abundance, composition, and size, thus demonstrating persistence in the provision of reef habitat and other ecosystem services. Our study indicates that coral community dynamics are predictable when accounting for the interplay between species life‐history, environmental conditions, and density‐dependence. We provide a quantitative framework for evaluating the ecological processes underlying community trajectory and characteristics important to ecosystem functioning.  相似文献   
8.
9.
10.
The degree of technological change biased to the environmental factor is crucial to industrial sustainable development. Using the stochastic frontier analysis method based on the translog production function and the panel data of 32 industrial sub-sectors in Shanghai over 1994–2011, this paper combines the evolution dynamic of the frontier technological structure with the evolution dynamic of technological change direction to estimate the output elasticities of production factors and the growth rate of green total factor productivity. Also, we investigate and compare the degrees of technological change biased to four production factors, i.e., capital, labor, energy, and carbon emissions. The results show that the industrial green total factor productivity in Shanghai presents an overall upward trend and mainly depends on the technical efficiency change. The improvements of labor productivity, R&D intensity, and energy efficiency can effectively enhance the green technical efficiency, while capital deepening has a mitigation effect on the green technical efficiency. The technological change of Shanghai's industrial production biases to energy use and capital saving, causing a high energy demand of industrial development. Under the dual impacts of economic development and energy-saving and emission-reduction policies, the degree of technological change biased to the environmental factor (carbon emissions) displays strong and weak alternations, indicating that the green bias of industrial technological change in Shanghai is not stable and that the green transformation of industrial development model needs to be further advanced.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号