首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4032篇
  免费   781篇
  国内免费   1995篇
  2024年   2篇
  2023年   240篇
  2022年   231篇
  2021年   330篇
  2020年   352篇
  2019年   382篇
  2018年   272篇
  2017年   314篇
  2016年   320篇
  2015年   273篇
  2014年   299篇
  2013年   298篇
  2012年   242篇
  2011年   259篇
  2010年   235篇
  2009年   294篇
  2008年   239篇
  2007年   340篇
  2006年   273篇
  2005年   245篇
  2004年   193篇
  2003年   173篇
  2002年   151篇
  2001年   147篇
  2000年   108篇
  1999年   91篇
  1998年   100篇
  1997年   57篇
  1996年   75篇
  1995年   41篇
  1994年   32篇
  1993年   26篇
  1992年   43篇
  1991年   25篇
  1990年   26篇
  1989年   16篇
  1988年   6篇
  1987年   5篇
  1986年   8篇
  1985年   10篇
  1984年   4篇
  1983年   1篇
  1982年   6篇
  1981年   3篇
  1980年   4篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1976年   3篇
  1958年   9篇
排序方式: 共有6808条查询结果,搜索用时 15 毫秒
1.
Theory suggests that spatial structuring should select for intermediate levels of virulence in parasites, but empirical tests are rare and have never been conducted with castration (sterilizing) parasites. To test this theory in a natural landscape, we construct a spatially explicit model of the symbiosis between the ant-plant Cordia nodosa and its two, protecting ant symbionts, Allomerus and Azteca . Allomerus is also a castration parasite, preventing fruiting to increase colony fecundity. Limiting the dispersal of Allomerus and host plant selects for intermediate castration virulence. Increasing the frequency of the mutualist, Azteca , selects for higher castration virulence in Allomerus , because seeds from Azteca -inhabited plants are a public good that Allomerus exploits. These results are consistent with field observations and, to our knowledge, provide the first empirical evidence supporting the hypothesis that spatial structure can reduce castration virulence and the first such evidence in a natural landscape for either mortality or castration virulence.  相似文献   
2.
3.
Freshwater ecosystem service is essential to human’s survival and development. Many studies have documented the spatial differences in the supply and demand of ecosystem services and proposed the concept of ecosystem services flows. However, few studies characterize freshwater ecosystem service flow quantitatively. Therefore, our paper aims to quantify the effects of freshwater ecosystem service flow on downstream areas. We developed a freshwater ecosystem service flow model and applied it in the Beijing–Tianjin–Hebei (BTH) region, China, for the year of 2000, 2005, and 2010. We assessed the regional water security with an improved freshwater security index by integrating freshwater service provision, consumption and flow; and found that most areas of the BTH region (69.2%) were affected by upstream freshwater flows. The areas achieving water security in the region also expanded to 66.9%, 66.1%, and 71.3%, which were 6.4%, 6.8% and 5.7% increments compared to no-flow situation, in 2000, 2005 and 2010, respectively. Setting quota for human water consumption is suggested to further improve water security. These results highlight the need to fully understand the connections between distant freshwater ecosystem service provision and local freshwater ecosystem service consumption. This approach may also help managers to choose more sustainable strategies for critical freshwater resource management across different regions.  相似文献   
4.
Nitrogen (N) resorption from senescing leaves is an important mechanism of N conservation for terrestrial plant species, but changes in N-resorption traits over wide-range and multi-level N addition gradients have not been well characterized. Here, a 3-year N addition experiment was conducted to determine the effects of N addition on N resorption of six temperate grassland species belonging to three different life-forms: Stipa krylovii Roshev. (grass), Cleistogenes squarrosa (T.) Keng (grass), Artemisia frigida Willd. (semishrub), Melissitus ruthenica C.W.Wang (semishrub and N-fixer), Potentilla acaulis L. (forb) and Allium bidentatum Fisch.ex Prokh. (forb). Generally, N concentrations in green leaves increased asymptotically for all species. N concentrations in senescent leaves for most species (5/6) also increased asymptotically, except that the N concentration in senescent leaves of A. bidentatum was independent of N addition. N-resorption efficiency decreased with increasing N addition level only for S. krylovii and A. frigida, while no clear responses were found for other species. These results suggest that long-term N fertilization increased N uptake and decreased N-resorption proficiency, but the effects on N-resorption efficiency were species-specific for different temperate grassland species in northern China. These inter-specific differences in N resorption may influence the positive feedback between species dominance and N availability and thus soil N cycling in the grassland ecosystem in this region.  相似文献   
5.
《Ecology letters》2018,21(1):31-42
Humans require multiple services from ecosystems, but it is largely unknown whether trade‐offs between ecosystem functions prevent the realisation of high ecosystem multifunctionality across spatial scales. Here, we combined a comprehensive dataset (28 ecosystem functions measured on 209 forest plots) with a forest inventory dataset (105,316 plots) to extrapolate and map relationships between various ecosystem multifunctionality measures across Europe. These multifunctionality measures reflected different management objectives, related to timber production, climate regulation and biodiversity conservation/recreation. We found that trade‐offs among them were rare across Europe, at both local and continental scales. This suggests a high potential for ‘win‐win’ forest management strategies, where overall multifunctionality is maximised. However, across sites, multifunctionality was on average 45.8‐49.8% below maximum levels and not necessarily highest in protected areas. Therefore, using one of the most comprehensive assessments so far, our study suggests a high but largely unrealised potential for management to promote multifunctional forests.  相似文献   
6.
Islands, which provide multiple ecosystem services, are subject to increasing urbanization pressure due to the ongoing marine development, especially in developing countries. Insights into the island urbanization mechanism and its ecological consequences are essential to sustainable development. In the present paper, the satellite images, nighttime lights, and topographic data were integrated to characterize the spatially explicit urbanization process and mechanism during 1995–2011 in the Zhoushan Island, East China. Furthermore, the corresponding spatially explicit changes in ecosystem services, including net primary productivity (NPP), carbon sequestration and oxygen production (CSOP), nutrient cycling, crop production, and habitat quality, were quantified based on the Carnegie–Ames–Stanford Approach (CASA) and Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) models. The results showed that the Zhoushan Island had experienced a rapid urbanization over the years, with significant urban encroachment on the farmland and tidal flat. Moreover, the urban land expansion was positively correlated with that of the nighttime lights and negatively correlated with the elevation, slope, and the distance to shoreline. These indicated that the urban expansion was resulted from the enhancement of socioeconomic activities, and concentrated in the near-shore areas with low altitude and gentle slope. The urban encroachment on other land use types resulted in a decrease of 3.4 Gg C a−1 NPP, 8.7 Gg a−1 CSOP, 13.2 Gg a−1 nutrient cycling, and 12.3 t a−1 crop production, respectively. In addition, the habitat quality in 11% area of this island degraded substantially. Therefore, to achieve sustainable development of islands, it is urgent to implement more stringent policies, such as island spatial regulation, environmental impact assessment, intensive land use, and urban greening, etc.  相似文献   
7.
Herbivory is a fundamental process that controls primary producer abundance and regulates energy and nutrient flows to higher trophic levels. Despite the recent proliferation of small‐scale studies on herbivore effects on aquatic plants, there remains limited understanding of the factors that control consumer regulation of vascular plants in aquatic ecosystems. Our current knowledge of the regulation of primary producers has hindered efforts to understand the structure and functioning of aquatic ecosystems, and to manage such ecosystems effectively. We conducted a global meta‐analysis of the outcomes of plant–herbivore interactions using a data set comprised of 326 values from 163 studies, in order to test two mechanistic hypotheses: first, that greater negative changes in plant abundance would be associated with higher herbivore biomass densities; second, that the magnitude of changes in plant abundance would vary with herbivore taxonomic identity. We found evidence that plant abundance declined with increased herbivore density, with plants eliminated at high densities. Significant between‐taxa differences in impact were detected, with insects associated with smaller reductions in plant abundance than all other taxa. Similarly, birds caused smaller reductions in plant abundance than echinoderms, fish, or molluscs. Furthermore, larger reductions in plant abundance were detected for fish relative to crustaceans. We found a positive relationship between herbivore species richness and change in plant abundance, with the strongest reductions in plant abundance reported for low herbivore species richness, suggesting that greater herbivore diversity may protect against large reductions in plant abundance. Finally, we found that herbivore–plant nativeness was a key factor affecting the magnitude of herbivore impacts on plant abundance across a wide range of species assemblages. Assemblages comprised of invasive herbivores and native plant assemblages were associated with greater reductions in plant abundance compared with invasive herbivores and invasive plants, native herbivores and invasive plants, native herbivores and mixed‐nativeness plants, and native herbivores and native plants. By contrast, assemblages comprised of native herbivores and invasive plants were associated with lower reductions in plant abundance compared with both mixed‐nativeness herbivores and native plants, and native herbivores and native plants. However, the effects of herbivore–plant nativeness on changes in plant abundance were reduced at high herbivore densities. Our mean reductions in aquatic plant abundance are greater than those reported in the literature for terrestrial plants, but lower than aquatic algae. Our findings highlight the need for a substantial shift in how biologists incorporate plant–herbivore interactions into theories of aquatic ecosystem structure and functioning. Currently, the failure to incorporate top‐down effects continues to hinder our capacity to understand and manage the ecological dynamics of habitats that contain aquatic plants.  相似文献   
8.
Apis cerana japonica Radoszkowski, endemic to Japan, is known to be one of the most important pollinators for wild plants and crops, such as buckwheat, in cool to warm temperate Japan. To determine the degree of dependence of A. cerana japonica on forest resources, we analyzed pollen brought back to nests in a typical “Satoyama” landscape with relatively high deciduous forest coverage in northern Japan. We divided the landscape elements of the study area into three types: deciduous forest, conifer plantation and open land according to landcover digital data, and each pollen taxon was assigned to one of these three types of landscape elements. We collected total pollen loads of 15.75 g (total of colonies A and B) in May (spring), 1.57 g (total of colonies A and C) in June (early summer), 19.03 g (total of colonies A, B and C) in July (mid‐summer) and 45.61 g (total of colonies A, B and D) in September (autumn). Deciduous forests are the most important foraging habitats for A. cerana japonica in the “Satoyama” landscape especially from spring to mid‐summer when mass flowering of tall trees and shrubs species provides rich floral resources for developing bee colonies. On the other hand, the bees frequently foraged from herbaceous plant species in autumn when flowering of tree species reduces and herbaceous plant species have flowering peaks. In turn, the bees provide pollination services to a number of wild flowers blooming in various forest layers ranging from the canopy to the understory layer.  相似文献   
9.
Salinity intrusion caused by land subsidence resulting from increasing groundwater abstraction, decreasing river sediment loads and increasing sea level because of climate change has caused widespread soil salinization in coastal ecosystems. Soil salinization may greatly alter nitrogen (N) cycling in coastal ecosystems. However, a comprehensive understanding of the effects of soil salinization on ecosystem N pools, cycling processes and fluxes is not available for coastal ecosystems. Therefore, we compiled data from 551 observations from 21 peer‐reviewed papers and conducted a meta‐analysis of experimental soil salinization effects on 19 variables related to N pools, cycling processes and fluxes in coastal ecosystems. Our results showed that the effects of soil salinization varied across different ecosystem types and salinity levels. Soil salinization increased plant N content (18%), soil NH4+ (12%) and soil total N (210%), although it decreased soil NO3? (2%) and soil microbial biomass N (74%). Increasing soil salinity stimulated soil N2O fluxes as well as hydrological NH4+ and NO2? fluxes more than threefold, although it decreased the hydrological dissolved organic nitrogen (DON) flux (59%). Soil salinization also increased the net N mineralization by 70%, although salinization effects were not observed on the net nitrification, denitrification and dissimilatory nitrate reduction to ammonium in this meta‐analysis. Overall, this meta‐analysis improves our understanding of the responses of ecosystem N cycling to soil salinization, identifies knowledge gaps and highlights the urgent need for studies on the effects of soil salinization on coastal agro‐ecosystem and microbial N immobilization. Additional increases in knowledge are critical for designing sustainable adaptation measures to the predicted intrusion of salinity intrusion so that the productivity of coastal agro‐ecosystems can be maintained or improved and the N losses and pollution of the natural environment can be minimized.  相似文献   
10.
Improving the accuracy of estimates of forest carbon exchange is a central priority for understanding ecosystem response to increased atmospheric CO2 levels and improving carbon cycle modelling. However, the spatially continuous parameterization of photosynthetic capacity (Vcmax) at global scales and appropriate temporal intervals within terrestrial biosphere models (TBMs) remains unresolved. This research investigates the use of biochemical parameters for modelling leaf photosynthetic capacity within a deciduous forest. Particular attention is given to the impacts of seasonality on both leaf biophysical variables and physiological processes, and their interdependent relationships. Four deciduous tree species were sampled across three growing seasons (2013–2015), approximately every 10 days for leaf chlorophyll content (ChlLeaf) and canopy structure. Leaf nitrogen (NArea) was also measured during 2014. Leaf photosynthesis was measured during 2014–2015 using a Li‐6400 gas‐exchange system, with A‐Ci curves to model Vcmax. Results showed that seasonality and variations between species resulted in weak relationships between Vcmax normalized to 25°C () and NArea (R2 = 0.62, < 0.001), whereas ChlLeaf demonstrated a much stronger correlation with (R2 = 0.78, < 0.001). The relationship between ChlLeaf and NArea was also weak (R2 = 0.47, < 0.001), possibly due to the dynamic partitioning of nitrogen, between and within photosynthetic and nonphotosynthetic fractions. The spatial and temporal variability of was mapped using Landsat TM/ETM satellite data across the forest site, using physical models to derive ChlLeaf. TBMs largely treat photosynthetic parameters as either fixed constants or varying according to leaf nitrogen content. This research challenges assumptions that simple NArea– relationships can reliably be used to constrain photosynthetic capacity in TBMs, even within the same plant functional type. It is suggested that ChlLeaf provides a more accurate, direct proxy for and is also more easily retrievable from satellite data. These results have important implications for carbon modelling within deciduous ecosystems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号