首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6057篇
  免费   928篇
  国内免费   2296篇
  2023年   250篇
  2022年   233篇
  2021年   334篇
  2020年   377篇
  2019年   422篇
  2018年   317篇
  2017年   346篇
  2016年   352篇
  2015年   327篇
  2014年   334篇
  2013年   370篇
  2012年   284篇
  2011年   294篇
  2010年   281篇
  2009年   371篇
  2008年   349篇
  2007年   419篇
  2006年   389篇
  2005年   335篇
  2004年   283篇
  2003年   265篇
  2002年   242篇
  2001年   212篇
  2000年   185篇
  1999年   134篇
  1998年   169篇
  1997年   116篇
  1996年   139篇
  1995年   124篇
  1994年   105篇
  1993年   101篇
  1992年   96篇
  1991年   76篇
  1990年   78篇
  1989年   84篇
  1988年   69篇
  1987年   53篇
  1986年   45篇
  1985年   67篇
  1984年   52篇
  1983年   24篇
  1982年   41篇
  1981年   40篇
  1980年   23篇
  1979年   20篇
  1978年   15篇
  1977年   8篇
  1976年   8篇
  1973年   7篇
  1958年   9篇
排序方式: 共有9281条查询结果,搜索用时 31 毫秒
1.
Brain energy disorders and oxidative stress due to chronic hypoperfusion were considered to be the major risk factors in the pathogenesis of dementia. In previous studies, we have demonstrated that acupuncture treatment improved cognitive function of VaD patients and multi-infarct dementia (MID) rats. Acupuncture therapy also increased the activities of glycometabolic enzymes in the brain. But it is not clear whether acupuncture treatment compensates neuronal energy deficit after cerebral ischemic through enhancing the activities of glucose metabolic enzymes and preserving mitochondrial function, and whether acupuncture neuroprotective effect is associated with activations of mitochondrial antioxidative defense system. So, the effect of acupuncture therapy on cognitive function, cerebral blood flow (CBF), mitochondrial respiratory function and oxidative stress in the brain of MID rats was investigated in this study. The results showed that acupuncture treatment significantly improved cognitive abilities and increased regional CBF of MID rats. Acupuncture elevated the activities of total SOD, CuZnSOD and MnSOD, decreased the level of malondialdehyde (MDA) and superoxide anion, regulated the ratio of reduced glutathione (GSH) and oxidized glutathione (GSSG) in mitochondria, and raised the level of the respiratory control index (RCI) and P/O ratio and the activities of mitochondrial respiratory enzymes of MID rats. These results indicated that acupuncture treatment improved cognitive function of MID rats; and this improvement might be due to increased CBF, which ameliorated mitochondrial dysfunction induced by ischemia and endogenous oxidative stress system of brain.  相似文献   
2.
Freshwater ecosystem service is essential to human’s survival and development. Many studies have documented the spatial differences in the supply and demand of ecosystem services and proposed the concept of ecosystem services flows. However, few studies characterize freshwater ecosystem service flow quantitatively. Therefore, our paper aims to quantify the effects of freshwater ecosystem service flow on downstream areas. We developed a freshwater ecosystem service flow model and applied it in the Beijing–Tianjin–Hebei (BTH) region, China, for the year of 2000, 2005, and 2010. We assessed the regional water security with an improved freshwater security index by integrating freshwater service provision, consumption and flow; and found that most areas of the BTH region (69.2%) were affected by upstream freshwater flows. The areas achieving water security in the region also expanded to 66.9%, 66.1%, and 71.3%, which were 6.4%, 6.8% and 5.7% increments compared to no-flow situation, in 2000, 2005 and 2010, respectively. Setting quota for human water consumption is suggested to further improve water security. These results highlight the need to fully understand the connections between distant freshwater ecosystem service provision and local freshwater ecosystem service consumption. This approach may also help managers to choose more sustainable strategies for critical freshwater resource management across different regions.  相似文献   
3.
Nitrogen (N) resorption from senescing leaves is an important mechanism of N conservation for terrestrial plant species, but changes in N-resorption traits over wide-range and multi-level N addition gradients have not been well characterized. Here, a 3-year N addition experiment was conducted to determine the effects of N addition on N resorption of six temperate grassland species belonging to three different life-forms: Stipa krylovii Roshev. (grass), Cleistogenes squarrosa (T.) Keng (grass), Artemisia frigida Willd. (semishrub), Melissitus ruthenica C.W.Wang (semishrub and N-fixer), Potentilla acaulis L. (forb) and Allium bidentatum Fisch.ex Prokh. (forb). Generally, N concentrations in green leaves increased asymptotically for all species. N concentrations in senescent leaves for most species (5/6) also increased asymptotically, except that the N concentration in senescent leaves of A. bidentatum was independent of N addition. N-resorption efficiency decreased with increasing N addition level only for S. krylovii and A. frigida, while no clear responses were found for other species. These results suggest that long-term N fertilization increased N uptake and decreased N-resorption proficiency, but the effects on N-resorption efficiency were species-specific for different temperate grassland species in northern China. These inter-specific differences in N resorption may influence the positive feedback between species dominance and N availability and thus soil N cycling in the grassland ecosystem in this region.  相似文献   
4.
Astrocytes play a key role in removing the synaptically released glutamate from the extracellular space and maintaining the glutamate below neurotoxic level in the brain. However, high concentration of glutamate leads to toxicity in astrocytes, and the underlying mechanisms are unclear. The purpose of this study was to investigate whether energy metabolism disorder, especially impairment of mitochondrial respiration, is involved in the glutamate‐induced gliotoxicity. Exposure to 10‐mM glutamate for 48 h stimulated glycolysis and respiration in astrocytes. However, the increased oxygen consumption was used for proton leak and non‐mitochondrial respiration, but not for oxidative phosphorylation and ATP generation. When the exposure time extended to 72 h, glycolysis was still activated for ATP generation, but the mitochondrial ATP‐linked respiration of astrocytes was reduced. The glutamate‐induced astrocyte damage can be mimicked by the non‐metabolized substrate d ‐aspartate but reversed by the non‐selective glutamate transporter inhibitor TBOA. In addition, the glutamate toxicity can be partially reversed by vitamin E. These findings demonstrate that changes of bioenergetic profile occur in cultured cortical astrocytes exposed to high concentration of glutamate and highlight the role of mitochondria respiration in glutamate‐induced gliotoxicity in cortical astrocytes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
5.
6.
《Ecology letters》2018,21(1):31-42
Humans require multiple services from ecosystems, but it is largely unknown whether trade‐offs between ecosystem functions prevent the realisation of high ecosystem multifunctionality across spatial scales. Here, we combined a comprehensive dataset (28 ecosystem functions measured on 209 forest plots) with a forest inventory dataset (105,316 plots) to extrapolate and map relationships between various ecosystem multifunctionality measures across Europe. These multifunctionality measures reflected different management objectives, related to timber production, climate regulation and biodiversity conservation/recreation. We found that trade‐offs among them were rare across Europe, at both local and continental scales. This suggests a high potential for ‘win‐win’ forest management strategies, where overall multifunctionality is maximised. However, across sites, multifunctionality was on average 45.8‐49.8% below maximum levels and not necessarily highest in protected areas. Therefore, using one of the most comprehensive assessments so far, our study suggests a high but largely unrealised potential for management to promote multifunctional forests.  相似文献   
7.
Herbivory is a fundamental process that controls primary producer abundance and regulates energy and nutrient flows to higher trophic levels. Despite the recent proliferation of small‐scale studies on herbivore effects on aquatic plants, there remains limited understanding of the factors that control consumer regulation of vascular plants in aquatic ecosystems. Our current knowledge of the regulation of primary producers has hindered efforts to understand the structure and functioning of aquatic ecosystems, and to manage such ecosystems effectively. We conducted a global meta‐analysis of the outcomes of plant–herbivore interactions using a data set comprised of 326 values from 163 studies, in order to test two mechanistic hypotheses: first, that greater negative changes in plant abundance would be associated with higher herbivore biomass densities; second, that the magnitude of changes in plant abundance would vary with herbivore taxonomic identity. We found evidence that plant abundance declined with increased herbivore density, with plants eliminated at high densities. Significant between‐taxa differences in impact were detected, with insects associated with smaller reductions in plant abundance than all other taxa. Similarly, birds caused smaller reductions in plant abundance than echinoderms, fish, or molluscs. Furthermore, larger reductions in plant abundance were detected for fish relative to crustaceans. We found a positive relationship between herbivore species richness and change in plant abundance, with the strongest reductions in plant abundance reported for low herbivore species richness, suggesting that greater herbivore diversity may protect against large reductions in plant abundance. Finally, we found that herbivore–plant nativeness was a key factor affecting the magnitude of herbivore impacts on plant abundance across a wide range of species assemblages. Assemblages comprised of invasive herbivores and native plant assemblages were associated with greater reductions in plant abundance compared with invasive herbivores and invasive plants, native herbivores and invasive plants, native herbivores and mixed‐nativeness plants, and native herbivores and native plants. By contrast, assemblages comprised of native herbivores and invasive plants were associated with lower reductions in plant abundance compared with both mixed‐nativeness herbivores and native plants, and native herbivores and native plants. However, the effects of herbivore–plant nativeness on changes in plant abundance were reduced at high herbivore densities. Our mean reductions in aquatic plant abundance are greater than those reported in the literature for terrestrial plants, but lower than aquatic algae. Our findings highlight the need for a substantial shift in how biologists incorporate plant–herbivore interactions into theories of aquatic ecosystem structure and functioning. Currently, the failure to incorporate top‐down effects continues to hinder our capacity to understand and manage the ecological dynamics of habitats that contain aquatic plants.  相似文献   
8.
Salinity intrusion caused by land subsidence resulting from increasing groundwater abstraction, decreasing river sediment loads and increasing sea level because of climate change has caused widespread soil salinization in coastal ecosystems. Soil salinization may greatly alter nitrogen (N) cycling in coastal ecosystems. However, a comprehensive understanding of the effects of soil salinization on ecosystem N pools, cycling processes and fluxes is not available for coastal ecosystems. Therefore, we compiled data from 551 observations from 21 peer‐reviewed papers and conducted a meta‐analysis of experimental soil salinization effects on 19 variables related to N pools, cycling processes and fluxes in coastal ecosystems. Our results showed that the effects of soil salinization varied across different ecosystem types and salinity levels. Soil salinization increased plant N content (18%), soil NH4+ (12%) and soil total N (210%), although it decreased soil NO3? (2%) and soil microbial biomass N (74%). Increasing soil salinity stimulated soil N2O fluxes as well as hydrological NH4+ and NO2? fluxes more than threefold, although it decreased the hydrological dissolved organic nitrogen (DON) flux (59%). Soil salinization also increased the net N mineralization by 70%, although salinization effects were not observed on the net nitrification, denitrification and dissimilatory nitrate reduction to ammonium in this meta‐analysis. Overall, this meta‐analysis improves our understanding of the responses of ecosystem N cycling to soil salinization, identifies knowledge gaps and highlights the urgent need for studies on the effects of soil salinization on coastal agro‐ecosystem and microbial N immobilization. Additional increases in knowledge are critical for designing sustainable adaptation measures to the predicted intrusion of salinity intrusion so that the productivity of coastal agro‐ecosystems can be maintained or improved and the N losses and pollution of the natural environment can be minimized.  相似文献   
9.
Improving the accuracy of estimates of forest carbon exchange is a central priority for understanding ecosystem response to increased atmospheric CO2 levels and improving carbon cycle modelling. However, the spatially continuous parameterization of photosynthetic capacity (Vcmax) at global scales and appropriate temporal intervals within terrestrial biosphere models (TBMs) remains unresolved. This research investigates the use of biochemical parameters for modelling leaf photosynthetic capacity within a deciduous forest. Particular attention is given to the impacts of seasonality on both leaf biophysical variables and physiological processes, and their interdependent relationships. Four deciduous tree species were sampled across three growing seasons (2013–2015), approximately every 10 days for leaf chlorophyll content (ChlLeaf) and canopy structure. Leaf nitrogen (NArea) was also measured during 2014. Leaf photosynthesis was measured during 2014–2015 using a Li‐6400 gas‐exchange system, with A‐Ci curves to model Vcmax. Results showed that seasonality and variations between species resulted in weak relationships between Vcmax normalized to 25°C () and NArea (R2 = 0.62, < 0.001), whereas ChlLeaf demonstrated a much stronger correlation with (R2 = 0.78, < 0.001). The relationship between ChlLeaf and NArea was also weak (R2 = 0.47, < 0.001), possibly due to the dynamic partitioning of nitrogen, between and within photosynthetic and nonphotosynthetic fractions. The spatial and temporal variability of was mapped using Landsat TM/ETM satellite data across the forest site, using physical models to derive ChlLeaf. TBMs largely treat photosynthetic parameters as either fixed constants or varying according to leaf nitrogen content. This research challenges assumptions that simple NArea– relationships can reliably be used to constrain photosynthetic capacity in TBMs, even within the same plant functional type. It is suggested that ChlLeaf provides a more accurate, direct proxy for and is also more easily retrievable from satellite data. These results have important implications for carbon modelling within deciduous ecosystems.  相似文献   
10.
Results of a comparative study of the sensitivity of the system of respiratory control to increases in the CO2 concentration and the intensity of free-radical processes in young and elderly subjects are described. It is shown that normal (natural) aging is accompanied by a decrease in the sensitivity of the respiratory system to hypercapnic stimulation and a parallel significant decrease in the activity of catalase in the blood of examined subjects. Mechanisms responsible for the modifications of the sensitivity of the system of respiratory control to hypercapnia are discussed; these shifts can be at least partly related to changes in the intensity of production of free radicals observed in elderly subjects. Neirofiziologiya/Neurophysiology, Vol. 40, No. 1, pp. 53–57, January–February, 2008.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号