首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10843篇
  免费   1942篇
  国内免费   2461篇
  2023年   367篇
  2022年   264篇
  2021年   302篇
  2020年   592篇
  2019年   617篇
  2018年   722篇
  2017年   670篇
  2016年   653篇
  2015年   662篇
  2014年   716篇
  2013年   916篇
  2012年   557篇
  2011年   647篇
  2010年   439篇
  2009年   585篇
  2008年   548篇
  2007年   596篇
  2006年   569篇
  2005年   507篇
  2004年   406篇
  2003年   416篇
  2002年   398篇
  2001年   325篇
  2000年   276篇
  1999年   271篇
  1998年   222篇
  1997年   184篇
  1996年   180篇
  1995年   198篇
  1994年   189篇
  1993年   151篇
  1992年   173篇
  1991年   110篇
  1990年   106篇
  1989年   79篇
  1988年   86篇
  1987年   56篇
  1986年   52篇
  1985年   70篇
  1984年   59篇
  1983年   33篇
  1982年   56篇
  1981年   39篇
  1980年   41篇
  1979年   30篇
  1978年   29篇
  1977年   16篇
  1976年   23篇
  1975年   11篇
  1974年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
3.
The chemical composition of the pore water from the sediment of a eutrophic lake is dominated by high concentrations of total dissolved CO2 (up to 12 mM), reduced soluble iron (up to 2 mM) and dissolved silica (up to 1 mM). The pH lies within the range of 6.70 ± 0.02; this reflects that the pore water is efficiently buffered by the CO2 acid/base system. This composition is directly related to the main diagenetic reactions which drive the organic matter mineralization i.e. methanogenesis and ferric oxides reduction. Other geochemical processes are of minor importance. A stoichiometric model based on these main reactions allow us: (i) to define a general formula for the organic matter which is close to Redfield's one for the C:N ratio, while the C:P ratio is much higher owing to a probable adsorption of phosphorus onto reactive surfaces of the solid and due to heterotrophic bacterial uptake; (ii) to calculate a global first order kinetic constant which drives the organo-polymers breakdown. Due to the strong influence on the trophic status of the lake caused by an excess of phosphate, special attention is devoted to this species. We show that the sediment-water interface is a source of dissolved phosphate when the hypolimnion is anoxic between May and November. This contribution represents about 17% of the river input and should be taken into account in any attempt toward lake restoration.  相似文献   
4.
Soil structural aspects of decomposition of organic matter by micro-organisms   总被引:15,自引:0,他引:15  
Soil architecture is the dominant control over microbially mediated decomposition processes in terrestrial ecosystems. Organic matter is physically protected in soil so that large amounts of well-decomposable compounds can be found in the vicinity of largely starving microbial populations. Among the mechanisms proposed to explain the phenomena of physical protection in soil are adsorption of organics on inorganic clay surfaces and entrapment of materials in aggregates or in places inaccessible to microbes. Indirect evidence for the existence of physical protection in soil is provided by the occurrence of a burst of microbial activity and related increased decomposition rates following disruption of soil structures, either by natural processes such as the remoistening of a dried soil or by human activities such as ploughing. In contrast, soil compaction has only little effect on the transformation of 14C-glucose. Another mechanism of control by soil structure and texture on decomposition in terrestrial ecosystems is through their impact on microbial turnover processes. The microbial population is not only the main biological agent of decomposition in soil, it is also an important, albeit small, pool through which most of the organic matter in soil passes. Estimates on the relative importance of different mechanisms controlling decomposition in soil could be derived from results of combined tracer and modelling studies. However, suitable methodology to quantify the relation between soil structure and biological processes as a function of different types and conditions of soils is still lacking.  相似文献   
5.
Results of a comparative study of the sensitivity of the system of respiratory control to increases in the CO2 concentration and the intensity of free-radical processes in young and elderly subjects are described. It is shown that normal (natural) aging is accompanied by a decrease in the sensitivity of the respiratory system to hypercapnic stimulation and a parallel significant decrease in the activity of catalase in the blood of examined subjects. Mechanisms responsible for the modifications of the sensitivity of the system of respiratory control to hypercapnia are discussed; these shifts can be at least partly related to changes in the intensity of production of free radicals observed in elderly subjects. Neirofiziologiya/Neurophysiology, Vol. 40, No. 1, pp. 53–57, January–February, 2008.  相似文献   
6.
7.
8.
Respiration, which is the second most important carbon flux in ecosystems following gross primary productivity, is typically represented in biogeochemical models by simple temperature dependence equations. These equations were established in the 19th century and have been modified very little since then. Recent applications of these equations to data on soil respiration have produced highly variable apparent temperature sensitivities. This paper searches for reasons for this variability, ranging from biochemical reactions to ecosystem‐scale substrate supply. For a simple membrane‐bound enzymatic system that follows Michaelis–Menten kinetics, the temperature sensitivities of maximum enzyme activity (Vmax) and the half‐saturation constant that reflects the affinity of the enzyme for the substrate (Km) can cancel each other to produce no net temperature dependence of the enzyme. Alternatively, when diffusion of substrates covaries with temperature, then the combined temperature sensitivity can be higher than that of each individual process. We also present examples to show that soluble carbon substrate supply is likely to be important at scales ranging from transport across membranes, diffusion through soil water films, allocation to aboveground and belowground plant tissues, phenological patterns of carbon allocation and growth, and intersite differences in productivity. Robust models of soil respiration will require that the direct effects of substrate supply, temperature, and desiccation stress be separated from the indirect effects of temperature and soil water content on substrate diffusion and availability. We speculate that apparent Q10 values of respiration that are significantly above about 2.5 probably indicate that some unidentified process of substrate supply is confounded with observed temperature variation.  相似文献   
9.
10.
The turnover of organic carbon in rivers could represent a large source of greenhouse gases to the atmosphere and studies have suggested that of the order of 70% of the dissolved organic carbon exported from soils could be lost in rivers before it flows to continental seas. The Environmental Change Network (ECN) monitoring of the dominantly peat-covered Trout Beck catchment within the Moor House site enabled the amount of dissolved organic carbon (DOC) lost within a stream over a 20-year period to be estimated. The study compared DOC concentrations of precipitation, shallow and deep soil waters with those at the catchment outlet. The mass balance between source and outlet was reconstructed by two methods: a single conservative tracer; and based upon a principal component analysis (PCA) using multiple tracers. The study showed the two methods had different outcomes, with the PCA showing a DOC gain and the single tracer showing a DOC loss. The DOC gain was attributed to an unmeasured groundwater contribution that dominates when the river discharge is lower. The DOC loss was related to the in-stream residence time, the soil temperature and month of the year, with longer in-stream residence times, warmer soils and summer months having larger DOC losses. The single tracer study suggested a 10 year average loss of 8.77 g C m−2 year−1, which is 33.1 g CO2eq m−2 year−1, or 29% of the DOC flux from the source over a mean in-stream residence time of 4.33 h.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号