首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3159篇
  免费   187篇
  国内免费   296篇
  2023年   21篇
  2022年   24篇
  2021年   48篇
  2020年   50篇
  2019年   58篇
  2018年   54篇
  2017年   42篇
  2016年   59篇
  2015年   72篇
  2014年   105篇
  2013年   130篇
  2012年   107篇
  2011年   115篇
  2010年   100篇
  2009年   139篇
  2008年   184篇
  2007年   195篇
  2006年   154篇
  2005年   163篇
  2004年   158篇
  2003年   170篇
  2002年   127篇
  2001年   122篇
  2000年   110篇
  1999年   90篇
  1998年   95篇
  1997年   81篇
  1996年   74篇
  1995年   72篇
  1994年   76篇
  1993年   63篇
  1992年   70篇
  1991年   44篇
  1990年   58篇
  1989年   37篇
  1988年   52篇
  1987年   40篇
  1986年   45篇
  1985年   33篇
  1984年   41篇
  1983年   23篇
  1982年   21篇
  1981年   27篇
  1980年   22篇
  1979年   14篇
  1978年   13篇
  1977年   14篇
  1976年   8篇
  1974年   11篇
  1973年   4篇
排序方式: 共有3642条查询结果,搜索用时 187 毫秒
1.
Multiple classical molecular dynamics simulations have been applied to the human LOX‐1 receptor to clarify the role of the Trp150Ala mutation in the loss of binding activity. Results indicate that the substitution of this crucial residue, located at the dimer interface, markedly disrupts the wild‐type receptor dynamics. The mutation causes an irreversible rearrangement of the subunits interaction pattern that in the wild‐type protein allows the maintaining of a specific symmetrical motion of the monomers. The subunits dislocation determines a loss of linearity of the arginines residues composing the basic spine and a consequent alteration of the long‐range electrostatic attraction of the substrate. Moreover, the anomalous subunits arrangement observed in the mutated receptor also affects the integrity of the hydrophobic tunnel, actively involved in the short‐range hydrophobic recognition of the substrate. The combined effect of these structural rearrangements generates the impairing of the receptor function.  相似文献   
2.
Using filtration enrichment techniques, an Aspergillus terreus arginine auxotrophic strain which contains a mutation that abolishes ornithine transcarbamylase (OTCase) activity has been isolated. This mutant has been genetically transformed with the cloned Aspergillus nidulans OTCase gene. Prototrophic transformants arose at a frequency of about 50 transformants per microgram of plasmid DNA. Southern blot analysis of DNA from the transformants showed that the transforming DNA was ectopically integrated at different locations in the A. terreus genome, often in multiple tandem copies. The transformants were phenotypically stable for several mitotic divisions and retained their capacity to produce extracellular enzymes.  相似文献   
3.
 β-Amylase deficiency in various cultivars of rice was examined at the molecular level. Using an antibody against β-amylase purified from germinating seeds of rice, we were able to demonstrate the expression and organization of the β-amylase gene in normal and deficient cultivars. Although β-amylase is a starch-hydrolyzing enzyme, as is α-amylase, the β-amylase protein/gene is expressed differently from the α-amylase protein/gene; i.e. (1) β-amylase is synthesized only in aleurone cells, (2) the enzyme production in the embryo-less half-seeds is not under hormonal control. We identified some cultivars of rice that are deficient for β-amylase activity. We present new evidence that synthesis is blocked at the level of mRNA synthesis in the deficient cultivars. The usefulness of β-amylase as a crop trait is also discussed. Received: 8 May 1998 / Accepted: 5 June 1998  相似文献   
4.
Summary The sporophores of Pleurotus are gymnocarpous and continuously release spores in the atmosphere causing respiratory allergies like hay fever and farmer’s lung disease among workers. The allergy is caused by the antigens present on the walls of the spores. Apart from this, during commercial production, these spores settle on the fruit bodies, germinate and form a velvety film which gives an unpleasant appearance to the mushrooms. The spores emitted may include new genotypes likely to attack wood or trees. Spore allergy is one of the most important limiting factors for the large scale cultivation of this species. Different approaches are being adopted at IIHR for the production of commercial sporeless/low-sporing strains of Pleurotus to alleviate the spore allergy problem. Attempts were made during the present investigation to produce sporeless or low-sporing mutants through u.v. mutation. Mutation of the mycelium did not yield the desired results. Mutation of the spores of Pleurotus sajor-caju yielded an extremely low-sporing mutant after 75 min exposure. The character has been found to be stable for more than 10 generations of subculturing.  相似文献   
5.
6.
Time course studies of carotenoid production and of mycelial growth in liquid cultures of Phycomyces blakesleeanus wild type [NRRL 1555 (?)], red mutants C9, C10 and C13 and the heterokaryon C2 * C9 are reported. The ratios of the concentrations of lycopene, γ-carotene and β-carotene in the red mutant C13 and in the heterokaryon C2 * C9 during the growth periods were measured. In these strains the concentration of lycopene is close to its final value after 2 days of growth, at a time at which β-carotene is just beginning to be produced. It is suggested that the β-carotene produced late is possibly synthesized via β-zeacarotene.  相似文献   
7.
8.
Na+/H+ antiporters comprise a super-family (CPA) of membrane proteins that are found in all kingdoms of life and are essential in cellular homeostasis of pH, Na+ and volume. Their activity is strictly dependent on pH, a property that underpins their role in pH homeostasis. While several human homologues have long been drug targets, NhaA of Escherichia coli has become the paradigm for this class of secondary active transporters as NhaA crystal structure provided insight into the architecture of this molecular machine. However, the mechanism of the strict pH dependence of NhaA is missing. Here, as a follow up of a recent evolutionary analysis that identified a ‘CPA motif’, we rationally designed three E. coli NhaA mutants: D133S, I134T, and the double mutant D133S-I134T. Exploring growth phenotype, transport activity and Li+-binding of the mutants, we revealed that Asp133 does not participate directly in proton binding, nor does it directly dictate the pH-dependent transport of NhaA. Strikingly, the variant I134T lost some of the pH control, and the D133S-Il134T double mutant retained Li+ binding in a pH independent fashion. Concurrent to loss of pH control, these mutants bound Li+ more strongly than the WT. Both positions are in close vicinity to the ion-binding site of the antiporter, attributing the results to electrostatic interaction between these residues and Asp164 of the ion-binding site. This is consistent with pH sensing resulting from direct coupling between cation binding and deprotonation in Asp164, which applies also to other CPA antiporters that are involved in human diseases.  相似文献   
9.
Abstract: The enzymatic hydrolysis of UDP-galactose in rat and calf brain was studied. The hydrolysis occurs in two steps: The first is the conversion of UDP-galactose to galactose-1-phosphate catalyzed by nucleotide pyrophosphatase (EC 3.6.1.9), and the second is the conversion of the latter to free galactose by alkaline phosphatase (EC 3.1.3.1). The overall conversion has a pH optimum of 9.0, but there is considerable activity at pH 7.4, which is the optimum for UDP-galactose:ceramide galactosyltransferase in the synthesis of cerebrosides. Preparations from cytosol from calf brain cerebellum or stem that were enriched in UDP-galactose hydrolytic activity inhibit cerebroside synthesis under conditions optimal for the synthesis. Microsome-rich and nuclear debris fractions contain the highest apparent specific activity among the subcellular fractions studied. Hydrolysis of UDP-galactose occurs in all areas of brain, brainstem having the highest activity. The apparent specific activity in jimpy mouse brain homogenate is nearly twice as high as in the control brain homogenate.  相似文献   
10.
The region of mitochondrial DNA corresponding to the intron mutant M6-200 in Saccharomyces cerevisiae D273-10B has been isolated, and the nucleotide sequence of a 519 bp RsaI fragment has been determined. Three nucleotide substitutions were found at nucleotides +2650 (G----T), +2668 (G----A) and +2798 (A----G), all within the genetically defined location in the gene. Particular significance can be attributed to the first two changes (+2650 and +2668), that can be genetically isolated from the third substitution and, in addition, alter conserved sequence features detected in a study [(1982) Biochimie 64, 867-881] of fungal mitochondrial introns.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号