首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6039篇
  免费   843篇
  国内免费   217篇
  2024年   3篇
  2023年   105篇
  2022年   60篇
  2021年   137篇
  2020年   226篇
  2019年   285篇
  2018年   218篇
  2017年   273篇
  2016年   288篇
  2015年   264篇
  2014年   321篇
  2013年   338篇
  2012年   296篇
  2011年   302篇
  2010年   264篇
  2009年   352篇
  2008年   373篇
  2007年   359篇
  2006年   328篇
  2005年   298篇
  2004年   263篇
  2003年   189篇
  2002年   206篇
  2001年   197篇
  2000年   171篇
  1999年   136篇
  1998年   134篇
  1997年   89篇
  1996年   92篇
  1995年   77篇
  1994年   68篇
  1993年   68篇
  1992年   45篇
  1991年   42篇
  1990年   35篇
  1989年   26篇
  1988年   17篇
  1987年   22篇
  1986年   22篇
  1985年   21篇
  1984年   19篇
  1983年   10篇
  1982年   18篇
  1981年   7篇
  1980年   13篇
  1979年   4篇
  1978年   6篇
  1977年   3篇
  1976年   2篇
  1974年   3篇
排序方式: 共有7099条查询结果,搜索用时 15 毫秒
1.
There is accumulating evidence that individuals leave their natal area and select a breeding habitat non-randomly by relying upon information about their natal and future breeding environments. This variation in dispersal is not only based on external information (condition dependence) but also depends upon the internal state of individuals (phenotype dependence). As a consequence, not all dispersers are of the same quality or search for the same habitats. In addition, the individual's state is characterized by morphological, physiological or behavioural attributes that might themselves serve as a cue altering the habitat choice of conspecifics. These combined effects of internal and external information have the potential to generate complex movement patterns and could influence population dynamics and colonization processes. Here, we highlight three particular processes that link condition-dependent dispersal, phenotype-dependent dispersal and habitat choice strategies: (1) the relationship between the cause of departure and the dispersers' phenotype; (2) the relationship between the cause of departure and the settlement behaviour and (3) the concept of informed dispersal, where individuals gather and transfer information before and during their movements through the landscape. We review the empirical evidence for these processes with a special emphasis on vertebrate and arthropod model systems, and present case studies that have quantified the impacts of these processes on spatially structured population dynamics. We also discuss recent literature providing strong evidence that individual variation in dispersal has an important impact on both reinforcement and colonization success and therefore must be taken into account when predicting ecological responses to global warming and habitat fragmentation.  相似文献   
2.
Spatial sorting is a process that can contribute to microevolutionary change by assembling phenotypes through space, owing to nonrandom dispersal. Here we first build upon and develop the “neutral” version of the spatial sorting hypothesis by arguing that in systems that are not characterized by repeated range expansions, the evolutionary effects of variation in dispersal capacity and assortative mating might not be independent of but interact with natural selection. In addition to generating assortative mating, variation in dispersal capacity together with spatial and temporal variation in quality of spawning area is likely to influence both reproductive success and survival of spawning migrating individuals, and this will contribute to the evolution of dispersal‐enhancing traits. Next, we use a comparative approach to examine whether differences in spawning migration distance among 18 species of freshwater Anguilla eels have evolved in tandem with two dispersal‐favoring traits. In our analyses, we use information on spawning migration distance, body length, and vertebral number that was obtained from the literature, and a published whole mitochondrial DNA‐based phylogeny. Results from comparative analysis of independent contrasts showed that macroevolutionary shifts in body length throughout the phylogeny have been associated with concomitant shifts in spawning migration. Shifts in migration distance were not associated with shifts in number of vertebrae. These findings are consistent with the hypothesis that spatial sorting has contributed to the evolution of more elongated bodies in species with longer spawning migration distances, or resulted in evolution of longer migration distances in species with larger body size. This novel demonstration is important in that it expands the list of ecological settings and hierarchical levels of biological organization for which the spatial sorting hypothesis seems to have predictive power.  相似文献   
3.
Differential seed dispersal, in which selfed and outcrossed seeds possess different dispersal propensities, represents a potentially important individual‐level association. A variety of traits can mediate differential seed dispersal, including inflorescence and seed size variation. However, how natural selection shapes such associations is poorly known. Here, we developed theoretical models for the evolution of mating system and differential seed dispersal in metapopulations, incorporating heterogeneous pollination, dispersal cost, cost of outcrossing and environment‐dependent inbreeding depression. We considered three models. In the ‘fixed dispersal model’, only selfing rate is allowed to evolve. In the ‘fixed selfing model’, in which selfing is fixed but differential seed dispersal can evolve, we showed that natural selection favours a higher, equal or lower dispersal rate for selfed seeds to that for outcrossed seeds. However, in the ‘joint evolution model’, in which selfing and dispersal can evolve together, evolution necessarily leads to higher or equal dispersal rate for selfed seeds compared to that for outcrossed. Further comparison revealed that outcrossed seed dispersal is selected against by the evolution of mixed mating or selfing, whereas the evolution of selfed seed dispersal undergoes independent processes. We discuss the adaptive significance and constraints for mating system/dispersal association.  相似文献   
4.
5.
6.
Proliferating axillary shoots of the difficult-to-root apple cultivar Jonathan acquired an enhanced ability to form adventitious roots with increasing number of subcultures in vitro. The transition between the difficult-to-root and the easy-to-root condition occurred at the fourth subculture.Endogenous levels of free IAA and ABA in shoot tissues were analysed by gas chromatography/mass spectrometry/single ion monitoring (GC/MS/SIM) using negative ion chemical ionisation. Tissues from the mother plants grown in the glasshouse contained more IAA and ABA than those from tissue-culture material. After establishment in vitro there was no variation in the IAA content throughout the subcultures but a decrease in ABA content was observed after the fourth transfer. The IAA/ABA ratio increased from 0.2 in difficult-to-root shoots from the initial culture up to 0.7 in easy-to-root shoots from the long-term subculture.  相似文献   
7.
东南亚地处热带,生物多样性极为丰富,可分为4个热点地区:印度-缅甸区的中南半岛、巽他区(含马来半岛、婆罗洲、苏门答腊岛)、菲律宾区(菲律宾群岛)、华莱士区(苏拉威西岛、爪哇岛、马鲁古群岛、小巽他群岛等)。中南半岛在泥盆纪便已是欧亚大陆的一部分,在印度板块撞击欧亚大陆之后受挤压而出;巽他区来自于冈瓦纳古陆和澳洲古陆;菲律宾群岛部分来自于劳亚古陆的碎片向南漂移,部分来自于太平洋西南岛弧的向北迁移;华莱士区则是劳亚古陆碎片、太平洋西南岛弧以及澳洲古陆北侧碎片的组合。巽他区地处赤道,常年温湿;菲律宾区、华莱士区、中南半岛则都受到不同程度的季风气候决定的干湿季变动。地质历史和季风气候影响程度的不同,奠定了东南亚4个生物多样性热点地区的雏形。华莱士区保存有大量的早期被子植物原始类群如睡莲目(Nymphaeales)和木兰藤目(Austrobaileyales),是现代被子植物起源地和冰期避难所之一。巽他区(婆罗洲)和中南半岛是亚洲热带植物的现代分布中心和"进化前沿",是整个东南亚地区重要的种源;而华莱士区的爪哇岛和小巽他群岛主要是物种迁入和中转的种库。这样的物种形成历史与迁移格局,塑造了东南亚4个生物多样性热点地区物种多样性水平与地理范围的基本格局。巽他区和印度-缅甸区曾在冰期通过陆桥相连,使得东南亚成为周边植物扩散交汇的一个"十字路口"。但是,人们对东南亚生物多样性热点地区的物种长距离扩散规律及植物地理学分区仍存在分歧;东南亚与邻近生物多样性热点地区如新几内亚岛、西高止山脉-斯里兰卡、中国横断山区的历史联系,还尚待深入解析。利用现代分子生物学技术,覆盖整个东南亚地区进行全域取样开展代表性类群的物种迁移与生物地理学研究,有望进一步揭示东南亚生物多样性热点地区的形成过程与演化趋势。  相似文献   
8.
In order to understand better the ecology of the temperate species Quercus petraea and the sub-Mediterranean species Quercus pyrenaica, two deciduous oaks, seedlings were raised in two contrasting light environments (SH, 5.3% full sunlight vs. HL, 70% full sunlight) for 2 years, and a subset of the SH seedlings were transferred to HL (SH–HL) in the summer of the second year. We predicted that Q. pyrenaica would behave more as a stress-tolerant species, with lower specific leaf area (SLA), allocation to leaf mass, and growth rate and less responsiveness to light in these metrics, than Q. petraea, presumed to be more competitive when resources, especially light and water, are abundant. Seedlings of Q. petraea had larger leaves with higher SLA, and exhibited a greater relative growth rate (RGR) in both SH and HL. They also displayed a higher proportion of biomass in stems (SMF), and a lower root to shoot ratio (R/S) in HL than those of Q. pyrenaica, which sprouted profusely, and had higher rates of photosynthesis (An) and stomatal conductance (gwv), but lower whole-plant net assimilation rate (NAR). On exposure to a sudden increase in light, SH–HL seedlings of both species showed a short period of photoinhibition, but fully acclimated photosynthetic features within 46 days after transference; height, main stem diameter, RGR and NAR all increased at the end of the experiment compared to SH seedlings, with these increases more pronounced in Q. petraea. Observed differences in traits and responses to light confirmed a contrasting ecology at the seedling stage in Q. petraea and Q. pyrenaica in consonance with differences in their overall distribution. We discuss how the characteristics of Q. petraea may limit the availability of suitable regeneration niches to microsites of high-resource availability in marginal populations of Mediterranean climate, with potential negative consequences for its recruitment under predicted climatic changes.  相似文献   
9.
We compared various aspects of the seed biology of eight non-pioneer tree species from a tropical seasonal rain forest in Xishuangbanna, SW China, that differ in time of dispersal, size and fresh seed moisture content (MC). Seeds were tested for germination under laboratory conditions after dehydration to different moisture levels and under 3.5, 10 and 30% solar irradiances in neutral-shade houses. For six species, germination was also compared in forest understory (3.5% light) and center of a forest gap (32.5% light). Under continuous dehydration over activated silica gel, 100% of seeds of four species had lost the ability to germinate after 48 h, and those of all species except Castanopsis hystrix (decreased from >90 to 30% germination) had lost the ability to germinate after 120 h. Four species did not differ in final germination percentages at the three irradiances (i.e. uniform germination). However, final germination percentages of Horsfieldia pandurifolia and Litsea pierrei var. szemaois were significantly lower in 30% than in 10 or 3.5% light, and seeds of Antiaris toxicaria and C. hystrix germinated to higher percentages in 30 and 10% than in 3.5% light. Mean time to germination (MTG) of the eight species (forest and shade house data combined) ranged from 5–5 days for Pometia tomentosa to 72–207days for L. pierrei; MTG for four species was ≤21 days. There was no obvious relationship between relative desiccation resistance and either time of dispersal, MTG or uniformity of germination at the three light levels, or between seed size and MC or MTG. However, the relationship between seed MC at maturity (25–60% fresh mass basis) and MC at 50% loss of seed viability (12.4–42.5%) was significant. Seven of the species fit Garwood’s (Ecol Monogr 53:159–181, 1983) rapid-rainy germination syndrome and one, L. pierrei, either her delayed-rainy or intermediate-dry germination syndrome. However, fresh, non-dehydrated seeds of all eight species germinated in ≤30 days at constant 30°C in light.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号