首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
  国内免费   1篇
  2019年   1篇
  2013年   1篇
  2008年   2篇
  2007年   2篇
  2005年   3篇
  2004年   3篇
  2003年   3篇
  2002年   1篇
  1998年   2篇
  1997年   4篇
  1996年   1篇
  1993年   1篇
排序方式: 共有24条查询结果,搜索用时 78 毫秒
1.
2.
ABSTRACT

To understand the mechanisms which enable the nucleus to function under low water potential, the morphology and biochemistry of potato cell nuclei were studied. Conformational modifications were observed in the chromatin of nuclei of cells growing under low water potential. These modifications include a higher number of heterochromatic centres, enlargement of the nuclear diameter, and a different accessibility of DNA to the action of restriction enzymes. Biochemical analyses showed that these chromatin modifications may coincide with quantitative and qualitative variations of several nuclear proteins, some of which may belong to the dehydrin family. We especially focussed our attention on a 45-kDa protein that is heat-stable and is recognised by an antibody raised against the conserved domain of dehydrins. The survival of potato cells in an environment where water availability is low may depend on several simultaneous events regarding the nucleus. The accumulation in the nucleus of specific proteins such as dehydrins could be required to stabilise the chromatin by means of their molecule-salvation action. Further studies are in progress to check whether or not variations in chromatin organisation may be one of the numerous traits that a cell must acquire to become water-stress resistant.  相似文献   
3.
低温诱导蛋白及其与植物的耐寒性研究进展   总被引:1,自引:1,他引:0  
低温诱导蛋白是植物在温度逆境条件下诱导产生的一系列蛋白,以抗冻蛋白、脱水蛋白、热激蛋白和热稳定蛋白较多,而且低温诱导蛋白质一旦在体内形成,植物体就会尽快地适应外界环境,表现出较强的抗逆性.本文对几种主要的低温诱导蛋白——抗冻蛋白、脱水蛋白、热激蛋白和热稳定蛋白的特性及其与植物耐寒性的关系研究进行综述,以期为进一步阐明植物耐寒的分子机制以及提高植物耐寒力研究提供新的思路.  相似文献   
4.
5.
Although considerable effort has been directed at identifying and understanding the function and regulation of stress-induced proteins in herbaceous plants, reports concerning woody plants are limited. Studies with herbaceous crops have revealed similarities in the types of proteins that accumulate in response to a wide array of abiotic stresses and hormonal cues such as the accumulation of abscisic acid. Many of the identified proteins appear to be related to dehydrins (the D-11 subgroup of late-embryogenesis-abundant proteins). The objective of the present study was to determine if seasonal induction of dehydrins is a common feature in woody plants and to see if seasonal patterns existed for other stress-induced proteins. Bark tissues from eight species of woody plants were collected monthly for a period of 1.5 years. The species included: peach (Prunus persica) cv. Loring; apple (Malus domestica) cv. Golden Delicious; thornless blackberry (Rubus sp.) cv. Chester; hybrid poplar (Populus nigra); weeping willow (Salix babylonica); flowering dogwood (Cornus florida); sassafras (Sassafras albidum); and black locust (Robinia pseudo-acacia). Immunoblots of bark proteins were probed with a polyclonal antibody recognizing a conserved region of dehydrin proteins, and monoclonal antibodies directed against members of the HS70 family of heat-shock proteins. Some proteins, immunologically related to dehydrins, appeared to be constitutive; however, distinct seasonal patterns associated with winter acclimation were also observed in all species. The molecular masses of these proteins varied widely, although similarities were observed in related species (willow and poplar). Identification of proteins using the monoclonal antibodies (HSP70, HSC70, BiP) was more definitive because of their inherent specificity, but seasonal patterns were more variable among the eight species examined. This study represents only a precursory examination of several proteins reported to be stress related in herbaceous plants, but the results indicate that these proteins are also common to woody plants and that further research to characterize their regulation and function in relation to stress adaptation and the perennial life cycle of woody plants is warranted.  相似文献   
6.
植物的低温蛋白   总被引:4,自引:0,他引:4  
李跃强  宣维健  盛承发 《生态学报》2004,24(5):1034-1039
综述了与植物耐冻性有关的一些植物内源蛋白质或多肽 ,包括低温防护蛋白、抗冻蛋白、植物脱水素、膜关联耐冻性多肽蛋白质。结果表明 ,植物的耐冻性与其低温蛋白 (cold induced proteins)有着密切的关系 ,并指出了抗冻蛋白行使功能的两种可能的作用方式。同时 ,耐冻性与除低温外的其它环境胁迫因子的植物抗性如抗干旱、抗病虫、高盐耐性、乙烯耐性等密切相关  相似文献   
7.
To survive winters, woody perennials of temperate zones must enter into endodormancy. Resumption of spring growth requires sufficient exposure to low temperature (chill units, CUs) in winter (chilling requirement), which also plays a role in the development of cold hardiness (cold acclimation). Physiological studies on dormancy breaking have focused on identifying markers, such as appearance or disappearance of proteins in response to varying degrees of chill unit accumulation. However, whether these changes are associated with dormancy transitions or cold acclimation is not clear. In the present study, greenhouse-grown blueberry (Vaccinium section Cyanococcus) plants were used to address this question. Three blueberry cultivars, Bluecrop, Tifblue, and Gulfcoast having chilling requirement of approximately 1 200, 900 and 600 CUs, respectively, were first exposed to 4°C for long enough to provide chill units equivalent to one-half of their respective chilling requirement. This treatment was expected to result in cold acclimation. A fraction of plants was then subjected to a 15/12°C (light/dark) regime for 2 weeks, a treatment expected to be “dormancy-neutral” but cause deacclimation. Before and after each treatment, cold hardiness and dormancy status of floral buds were determined; proteins were extracted from the buds collected on the same sampling date, and separated by one-dimensional SDS-PAGE. Dehydrin-like proteins were identified by immunoblotting, using anti-dehydrin antiserum. Results indicate that the chilling treatment resulted in cold acclimation as indicated by increased bud hardiness in all three cultivars. Data also indicate a distinct accumulation of three dehydrin-like proteins of 65, 60, and 14 kDa during cold acclimation. The cold hardiness and levels of dehydrin proteins decreased during the exposure to 15/12°C for 2 weeks. Results also confirmed that this treatment had no negative effect on chill unit accumulation. Densitometric scans of protein gels indicated a close association between the abundance of dehydrins and degree of cold hardiness in these cultivars. In addition, levels of the dehydrin proteins and cold hardiness remained about the same between 100% and >100% satisfaction of chilling requirement. These results suggest that changes in dehydrin expression are more closely associated with cold hardiness than with dormancy transitions.  相似文献   
8.
Winter, as compared with spring cereals, possess better acclimation mechanisms that allow them to overwinter and survive freezing temperatures. This difference is genetically programmed and involves a complex genetic system. To understand the nature of this system and its regulation by low temperature, genes associated with freezing tolerance in wheat ( Triticum aestivum L.) were identified and characterized. Among these, the wcs120 gene family encodes a group of proteins ranging in size from 12 to 200 kDa. As shown by biochemical, immunohistochemical, molecular and genetic analyses, this gene family is specific to the Poaceae, highly abundant and coordinately regulated by low temperature. Furthermore, accumulation of WCS protein is directly correlated with the development of freezing tolerance. These analyses also revealed a regulatory control of the vernalization process over low temperature gene expression in winter cereals. Recent studies suggest that the molecular mechanisms controlling the expression of these genes involve negative regulatory factors that are modulated by phosphorylation.  相似文献   
9.
Intrinsically disordered stress proteins have been shown to act as chaperones, protecting proteins from damage caused by stresses such as freezing and thawing. Dehydration proteins (dehydrins) are intrinsically disordered stress proteins that are found in almost all land plants. They consist of a variable number of the short, semi‐conserved, Y‐, S‐, and K‐segments, with longer stretches of poorly conserved sequences in between. Previous studies have provided conflicting views on the details of the dehydrin cryoprotective mechanism of enzymes. Experiments with polyethylene glycol (PEG) have shown that PEG cryoprotective efficiency is the same as dehydrins of the same hydrodynamic radius, suggesting that the protein's disordered and polar nature is important, rather than the specific order of the residues. To further elucidate the mechanism, we created scrambled variants of the wild grape dehydrins K2 and YSK2 and tested their ability to protect lactate dehydrogenase and yeast frataxin homolog‐1 from freeze/thaw damage. The results show that for preventing aggregation, it is the sequence composition and the size of the dehydrin that is the most important factor in protection, while for freeze/thaw damage causing loss of secondary structure, it is the sequence composition that is most significant.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号