首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2140篇
  免费   397篇
  国内免费   189篇
  2726篇
  2025年   14篇
  2024年   63篇
  2023年   67篇
  2022年   65篇
  2021年   89篇
  2020年   110篇
  2019年   110篇
  2018年   99篇
  2017年   105篇
  2016年   110篇
  2015年   112篇
  2014年   103篇
  2013年   140篇
  2012年   116篇
  2011年   87篇
  2010年   64篇
  2009年   96篇
  2008年   91篇
  2007年   91篇
  2006年   94篇
  2005年   110篇
  2004年   73篇
  2003年   71篇
  2002年   65篇
  2001年   78篇
  2000年   58篇
  1999年   56篇
  1998年   35篇
  1997年   31篇
  1996年   33篇
  1995年   38篇
  1994年   36篇
  1993年   22篇
  1992年   16篇
  1991年   31篇
  1990年   30篇
  1989年   22篇
  1988年   14篇
  1987年   14篇
  1986年   11篇
  1985年   9篇
  1984年   11篇
  1983年   6篇
  1982年   8篇
  1981年   6篇
  1980年   2篇
  1979年   4篇
  1978年   3篇
  1977年   3篇
  1974年   2篇
排序方式: 共有2726条查询结果,搜索用时 0 毫秒
1.
Populations of viable sclerotia ofSclerotium rolfsii were highest in soil in a field in which tomato was planted for three successive years before sampling and in one in which tomato followed groundnut in the 2 years prior to this study. The lowest sclerotial numbers were recorded in fields in which groundnut followed maize or in which maize or sorghum was the last crop before sampling.  相似文献   
2.
3.
Cooper  H. D.  Clarkson  D. T.  Ponting  Helen E.  Loughman  B. C. 《Plant and Soil》1986,91(3):397-400
Summary Nitrate fertiliser labelled with15N was applied to a field grown crop of winter wheat. Uptake and assimilation of fertiliser nitrate was studied by monitoring the appearance of labelled nitrate and labelled amino acids in the xylem sap. Shortly after applying15N-nitrate to the soil about 30 per cent of recently absorbed15N was in the reduced form, indicating that roots of cereal crops can make a substantial contribution in reducing nitrate. Seasonal changes in crop growth andin vivo NRA are also described.  相似文献   
4.
This study compares estimates of the census size of the spawning population with genetic estimates of effective current and long-term population size for an abundant and commercially important marine invertebrate, the brown tiger prawn (Penaeus esculentus). Our aim was to focus on the relationship between genetic effective and census size that may provide a source of information for viability analyses of naturally occurring populations. Samples were taken in 2001, 2002 and 2003 from a population on the east coast of Australia and temporal allelic variation was measured at eight polymorphic microsatellite loci. Moments-based and maximum-likelihood estimates of current genetic effective population size ranged from 797 to 1304. The mean long-term genetic effective population size was 9968. Although small for a large population, the effective population size estimates were above the threshold where genetic diversity is lost at neutral alleles through drift or inbreeding. Simulation studies correctly predicted that under these experimental conditions the genetic estimates would have non-infinite upper confidence limits and revealed they might be overestimates of the true size. We also show that estimates of mortality and variance in family size may be derived from data on average fecundity, current genetic effective and census spawning population size, assuming effective population size is equivalent to the number of breeders. This work confirms that it is feasible to obtain accurate estimates of current genetic effective population size for abundant Type III species using existing genetic marker technology.  相似文献   
5.
Summary Christmas bush (Ceratopetalum gummiferum Sm) is a shrubby tree species of the east coast of New South Wales in Australia. It is much prized as a cut flower crop because of its bright, pinky red floral calyces. New varieties are being developed, the storage of which is an important issue. In this study, it was shown that shoot tips sampled from in vitro plantlets withstood cryopreservation using the encapsulation-dehydration technique. The protocol leading to optimal regrowth was the following: excised shoot tips were pretreated for 1 d in the dark on hormone-free Murashige and Skoog (MS) medium with 0.3 M sucrose, then encapsulated in 3% calcium alginate and precultured in liquid MS medium with 0.5 M sucrose for 3 d. Precultured beads were dehydrated for 6 h in the air current of the laminar flow cabinet to 24.3% moisture content (fresh weight basis) before rapid immersion in liquid nitrogen. Under these conditions, regrowth of shoot tips after cryopreservation reached 61.4%. Regrowth of cryopreserved shoot tips was not affected by the period of cold acclimation of in vitro mother plants.  相似文献   
6.
  总被引:3,自引:0,他引:3  
Aim To assemble a data set of global crop planting and harvesting dates for 19 major crops, explore spatial relationships between planting date and climate for two of them, and compare our analysis with a review of the literature on factors that drive decisions on planting dates. Location Global. Methods We digitized and georeferenced existing data on crop planting and harvesting dates from six sources. We then examined relationships between planting dates and temperature, precipitation and potential evapotranspiration using 30‐year average climatologies from the Climatic Research Unit, University of East Anglia (CRU CL 2.0). Results We present global planting date patterns for maize, spring wheat and winter wheat (our full, publicly available data set contains planting and harvesting dates for 19 major crops). Maize planting in the northern mid‐latitudes generally occurs in April and May. Daily average air temperatures are usually c. 12–17 °C at the time of maize planting in these regions, although soil moisture often determines planting date more directly than does temperature. Maize planting dates vary more widely in tropical regions. Spring wheat is usually planted at cooler temperatures than maize, between c. 8 and 14 °C in temperate regions. Winter wheat is generally planted in September and October in the northern mid‐latitudes. Main conclusions In temperate regions, spatial patterns of maize and spring wheat planting dates can be predicted reasonably well by assuming a fixed temperature at planting. However, planting dates in lower latitudes and planting dates of winter wheat are more difficult to predict from climate alone. In part this is because planting dates may be chosen to ensure a favourable climate during a critical growth stage, such as flowering, rather than to ensure an optimal climate early in the crop's growth. The lack of predictability is also due to the pervasive influence of technological and socio‐economic factors on planting dates.  相似文献   
7.
8.
9.
10.
A plant growth promoting rhizobacterium (PGPR)Pseudomonas fluorescens SBW25 (WT) protects a number of crop plant species from damping-off caused by Pythium ultimum. A genetically modified, phenazine-1-carboxylic acid (PCA) producing variant, 23.10, carries on its chromosome a single copy of phzABCDEFG, under the control of the P tac constitutive promoter. The genetically modified biological control agent (GM-BCA), 23.10, has improved biocontrol activity when compared to wild type SBW25, and can effectively suppress Pythium spp. present at up to 100 times normal field infestations. GM-BCA inocula establish high population densities which persist well in the phytosphere of several crop plants including pea, wheat and sugar beet, effectively suppressed infection and promoted increase in total plant biomass. It also has an improved spectrum of activity over other plant phytopathogens such as Fusarium spp. Gaeumannomyces graminis var. tritici, Phytophtora cinnamomi and Rhizoctonia solani. However in developing BCAs and in particular GMBCAs it is important to determine whether their use has any adverse effect in the environment. Any observed changes following inoculation with wild type BCA or GM BCA in microbial diversity (bacteria and fungi) were negligible when assessed by either quantitive selective plate count methods (CFU/g) or culture independent molecular assays (SSU rRNA based PCR-DGGE). Rhizosphere community diversity profiles (DGGE) in infected plants in the presence of inocula were highly similar to disease free systems. Histological assessment of the impact of inocula on established functional mycorrhizae associations were conducted on cores collected from an established field margin grassland pasture. No adverse impact on mycorrhizal colonization and root infection were recorded after addition of WT or GM-BCA bacterial inocula as a soil drench. This approach and the related culturable and culture independent methods have recorded only a minor, transient perturbation to microbial communities, but as far as we are aware this is the first direct demonstration that a functional, AFC producing GMM also has only a transient impact on mycorrhizal associations in established plant communities. In all instances studied the plant species, plant stage of development and disease, damping-off, had a greater impact on changes in rhizosphere diversity than the presence of an introduced GM bacterial inocula.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号