首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   843篇
  免费   65篇
  国内免费   129篇
  2023年   10篇
  2022年   12篇
  2021年   20篇
  2020年   22篇
  2019年   21篇
  2018年   19篇
  2017年   26篇
  2016年   26篇
  2015年   29篇
  2014年   38篇
  2013年   50篇
  2012年   38篇
  2011年   50篇
  2010年   31篇
  2009年   45篇
  2008年   37篇
  2007年   48篇
  2006年   37篇
  2005年   48篇
  2004年   30篇
  2003年   16篇
  2002年   31篇
  2001年   27篇
  2000年   16篇
  1999年   28篇
  1998年   16篇
  1997年   16篇
  1996年   21篇
  1995年   13篇
  1994年   14篇
  1993年   13篇
  1992年   19篇
  1991年   16篇
  1990年   16篇
  1989年   22篇
  1988年   13篇
  1987年   15篇
  1986年   10篇
  1985年   13篇
  1984年   13篇
  1983年   6篇
  1982年   8篇
  1981年   12篇
  1980年   7篇
  1979年   4篇
  1978年   2篇
  1977年   3篇
  1974年   5篇
  1973年   2篇
  1972年   1篇
排序方式: 共有1037条查询结果,搜索用时 31 毫秒
1.
Population dynamics, rate of root penetration, and external root feeding behavior of Pratylenchus agilis (Pa) in monoxenic cultures of intact corn seedlings and root explants of corn, tomato, and soybean were studied. In descending order of suitability as hosts were I. O. Chief corn, Rutgers tomato, and Williams soybean. Soybean entries Kent, Pickett 71, PI 90763, and Essex were poor hosts. Numbers of eggs and vermiform Pa in the agar medium indicated total fecundity and host suitability. Agar, sand, or soil as support media did not appear to affect Pa root penetration, but the rate of corn root growth did. Whereas most vermiform Pa and eggs were in roots, substantial numbers appeared able to feed and complete their life cycle as ectoparasites on root epidermal cells and root hairs.  相似文献   
2.
A genomic DNA clone encoding corn cystatin, a cysteine proteinase inhibitor of corn, was isolated from a λEMBL3 phage genomic library. The genomic DNA clone spans approximately 2.2 kb and consists of three exons and two introns. The exon number and the intron breakpoints coincide with those of the genes for two types of oryzacystatin.  相似文献   
3.
4.
张瑞  李鹏展  王力 《生态学杂志》2019,30(2):359-369
土壤水分研究是统筹农业生产和生态环境建设的关键环节.本研究结合4年田间定位试验,通过对黄土高原南部长武旱塬冬小麦和春玉米2012—2015年土壤水分状况的研究,分析农田土壤干层形成情况、土壤水分对作物生长的影响、降水对土壤水库的影响以及作物对土壤水分状况的影响.结果表明: 降水年型是冬小麦地土壤干层形成的主导因素,年内降水分布不均是春玉米地土壤干层形成的主导因素.长武旱塬区冬小麦和春玉米一年一季的种植制度不会导致永久性干层的产生;相较于春玉米,冬小麦根系生长习性更符合黄土旱塬区土壤水分循环特征,黄土旱塬区土壤水分有效性可保证作物产量稳定;降水作用下,冬小麦土壤水库充、放水过程呈现收获期、休闲期和苗期连续充水、缓慢消耗期和大量消耗期连续失水相互交替的特点.0~300和300~600 cm土层土壤水库不一致性现象明显,以最大根深作为野外监测试验中土壤含水量的取样深度时,由于深层土壤水库负反馈作用,不同降水年型下,休闲期和苗期的蒸散均会被高估,缓慢消耗期和大量消耗期的蒸散均会被低估.冬小麦田间过渡层存在的范围为140~360 cm;作物生长的时间跨度影响土壤水库效应的发挥,土壤水库对冬小麦供水表现为年际间的调节作用,土壤水库对春玉米供水表现为季节间的调节作用.  相似文献   
5.
Susceptibility of Asian corn borer (ACB), Ostrinia furnacalis (Guenée) to Bacillus thuringiensis (Bt) Cry1Ab protein was studied between 2015 and 2016 with 11 ACB populations, collected from various geographical regions in Vietnam. A concentration range of Cry1Ab from 0.20 to 26.10 ng/cm2 of diet was evaluated against F1 ACB neonates using diet surface-overlay bioassays. Mortality data was recorded daily until seven days after infestation. Growth inhibition was recorded at the end of seven days. The median lethal concentration (LC50) varied ≈3-fold among the different populations, ranging from 0.58 to 1.83 ng/cm2 of diet with an overall mean of 0.86 ng/cm2 of diet. Even the lowest concentration of 0.20 ng/cm2 caused 73.53% growth inhibition. >90% growth inhibition was achieved at 0.82 ng/cm2 or higher concentrations. The results reflect natural variation in Bt susceptibility among ACB populations rather than variation caused by prior exposure to selection pressures. LC99 value (17.26 ng/cm2) was generated by pooling mortality data across different populations. The upper fiducial limit of LC99 (24.38 ng/cm2) could be a potential diagnostic dose for future resistance monitoring programs. The findings from this study suggest that ACB populations in Vietnam are highly susceptible to Cry1Ab protein. This is the first report of Cry1Ab susceptibility of different ACB populations in Vietnam and will serve as a baseline for future resistance monitoring work.  相似文献   
6.
Corn leaf aphid Rhopalosiphum maidis (Fitch) can feed on various cereal crops and transmit viruses that may cause serious economic losses. To test the impact of both host plant species and age on R. maidis, as well as the proteomic difference of diverse populations, we first investigated the survival and reproduction of six R. maidis populations (i.e., LF, HF, GZ, DY, BJ, and MS) via a direct observation method in the laboratory on 10 and 50 cm high maize seedlings, and 10 cm high barley seedlings. Then a proteomic approach was implemented to identify the differentially expressed proteins from both aphids and endosymbionts of BJ and MS populations. Results indicated that the BJ population performed significantly better than the others on both barley and 50 cm high maize seedlings, while no population could survive on 10 cm high maize seedlings. The proteomic results demonstrated that the expression levels of myosin heavy chain (muscle isoform X12) (spot 781) and peroxidase (spot 1383) were upregulated, while ATP-dependent protease Hsp 100 (spot 2137) from Hamiltonella defensa and protein SYMBAF (spot 2703) from Serratia symbiotica were downregulated in the BJ population when compared to expression levels of the MS population. We hypothesize that the fatalness observed on 10 cm high maize seedlings may be caused by secondary metabolites that are synthesized by the seedlings and the MS population of R. maidis should be more stress-resistant than the BJ population. Our results also provide insights for understanding the interaction between host plants and aphids.  相似文献   
7.
Increasing demand for food and biofuel feedstocks may substantially affect soil nutrient budgets, especially in the United States where there is great potential for corn (Zea mays L) stover as a biofuel feedstock. This study was designed to evaluate impacts of projected stover harvest scenarios on budgets of soil nitrogen (N), phosphorus (P), and potassium (K) currently and in the future across the conterminous United States. The required and removed N, P, and K amounts under each scenario were estimated on the basis of both their average contents in grain and stover and from an empirical model. Our analyses indicate a small depletion of soil N (?4 ± 35 kg ha?1) and K (?6 ± 36 kg ha?1) and a moderate surplus of P (37 ± 21 kg ha?1) currently on the national average, but with a noticeable variation from state to state. After harvesting both grain and projected stover, the deficits of soil N, P, and K were estimated at 114–127, 26–27, and 36–53 kg ha?1 yr?1, respectively, in 2006–2010; 131–173, 29–32, and 41–96 kg ha?1 yr?1, respectively, in 2020; and 161–207, 35–39, and 51–111 kg ha?1 yr?1, respectively, in 2050. This study indicates that the harvestable stover amount derived from the minimum stover requirement for maintaining soil organic carbon level scenarios under current fertilization rates can be sustainable for soil nutrient supply and corn production at present, but the deficit of P and K at the national scale would become larger in the future.  相似文献   
8.
Past applications of biosolids to soils at some locations added higher Cd levels than presently permitted. Cadmium phytoextraction would alleviate current land use constraints. Unamended farm soil, and biosolids amended farm and mine soils were obtained from a Fulton Co., IL biosolids management facility. Soils contained 0.16, 22.8, 45.3 mg Cd kg–1 and 43.1, 482, 812 mg Zn kg–1 respectively with initial pH 6.0, 6.1, 6.4. In greenhouse studies, Swiss chard (Beta vulgaris var. cicla), a Cd-accumulator maize (inbred B37 Zea mays) and a southern France Cd-hyperaccumulator genotype of Noccaea caerulescens were tested for Cd accumulation and phytoextraction. Soil pH was adjusted from ~5.5–7.0. Additionally 100 rice (Oryza sativa) genotypes and the Ni-hyperaccumulator Alyssum murale were screened for potential phytoextraction use.

Chard suffered phytotoxicity at low pH and accumulated up to 90 mg Cd kg–1 on the biosolids amended mine soil. The maize inbred accumulated up to 45 mg Cd kg–1 with only mild phytotoxicity symptoms during early growth at pH > 6.0. N. caerulescens did not exhibit phytotoxicity symptoms at any pH, and accumulated up to 235 mg Cd kg–1 in 3 months. Reharvested N. caerulescens accumulated up to 900 mg Cd kg–1 after 10 months. Neither Alyssum nor 90% of rice genotypes survived acceptably.

Both N. caerulescens and B37 maize show promise for Cd phytoextraction in IL and require field evaluation; both plants could be utilized for nearly continuous Cd removal. Other maize inbreds may offer higher Cd phytoextraction at lower pH, and mono-cross hybrids higher shoot biomass yields. Further, maize grown only for biomass Cd maximum removal could be double-cropped.  相似文献   

9.
The non-selective apoplastic passage of Cu and Cu-citrate complexes into the root stele of monocotyledonous corn and dicotyledonous soybean was investigated using an inorganic-salt-precipitation technique. Either Cu ions or Cu-citrate complexes were drawn into root through the apoplast from the root growth medium, and K4[Fe(CN)6] was subsequently perfused through xylem vessels or the entire root cross section. Based on microscopic identification of the reddish-brown precipitates of copper ferrocyanide in the cell walls of the xylem of corn and soybean roots, Cu2+ passed through the endodermal barrier into the xylem of both species. When the solution containing 200 μM CuSO4 and 400 μM sodium citrate (containing 199.98 μM Cu-citrate, 0.02 μM Cu2+) was drawn via differential pressure gradients into the root xylem while being perfused with K4[Fe(CN)6] through the entire root cross-section, reddish-brown precipitates were observed in the walls of the stele of soybean, but not corn root. However, when a CuSO4 solution containing 0.02 or 0.2 μM free Cu2+ was used, no reddish-brown precipitates were detected in the stele of either of the two plants. Results indicated that endodermis was permeable to Cu-citrate complexes in primary roots of soybean, but not corn. The permeability of the endodermal barrier to the Cu-citrate complex may vary between dicotyledonous and monocotyledonous plants, which has considerable implications for chelant-enhanced phytoextraction.  相似文献   
10.
Nitrogen fertilizer and harvest management will alter soils under bioenergy crop production and the long‐term effects of harvest timing and residue removal remain relatively unknown. Compared to no‐tilled corn (NT‐C, Zea mays L.), switchgrass (Panicum virgatum L.) is predicted to improve soil properties [i.e. soil organic C (SOC), soil microbial biomass (SMB‐C), and soil aggregation] due to its perennial nature and deep‐rooted growth form, but few explicit field comparisons exist. We assessed soil properties over 9 years for a rainfed study of N fertilizer rate (0, 60, 120, and 180 kg N ha?1) and harvest management on switchgrass (harvested in August and postfrost) and NT‐C (with and without 50% stover removal) in eastern NE. We measured SOC, aggregate stability, SMB‐C, bulk density (BD), pH, P and K in the top 0–30 cm. Both NT‐C and switchgrass increased SMB‐C, SOC content, and aggregate stability over the 9 years, reflecting improvement from previous conventional management. However, the soils under switchgrass had double the percent aggregate stability, 1.3 times more microbial biomass, and a 5–8% decrease in bulk density in the 0–5 and 5–10 cm depths compared to NT‐C. After 9 years, cumulative decrease in available P was significantly greater beneath NT‐C (?24.0 kg P ha?1) compared to switchgrass (?5.4 kg P ha?1). When all measured soil parameters were included in the Soil Management Assessment Framework (SMAF), switchgrass improved soil quality index over time (ΔSQI) in all depths. NT‐C without residue removal did not affect ΔSQI, but 50% residue removal decreased ΔSQI (0–30 cm) due to reduced aggregate stability and SMB‐C. Even with best‐management practices such as NT, corn stover removal will have to be carefully managed to prevent soil degradation. Long‐term N and harvest management studies that include biological, chemical, and physical soil measurements are necessary to accurately assess bioenergy impacts on soils.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号