首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1119篇
  免费   149篇
  国内免费   38篇
  2024年   1篇
  2023年   44篇
  2022年   12篇
  2021年   27篇
  2020年   71篇
  2019年   68篇
  2018年   50篇
  2017年   61篇
  2016年   49篇
  2015年   54篇
  2014年   77篇
  2013年   83篇
  2012年   49篇
  2011年   58篇
  2010年   42篇
  2009年   65篇
  2008年   67篇
  2007年   48篇
  2006年   40篇
  2005年   46篇
  2004年   50篇
  2003年   30篇
  2002年   38篇
  2001年   29篇
  2000年   23篇
  1999年   16篇
  1998年   32篇
  1997年   14篇
  1996年   13篇
  1995年   9篇
  1994年   4篇
  1993年   1篇
  1992年   2篇
  1991年   7篇
  1990年   5篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   4篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1981年   4篇
  1978年   1篇
  1976年   1篇
  1973年   1篇
排序方式: 共有1306条查询结果,搜索用时 15 毫秒
1.
Coral nursery and outplanting practices have grown in popularity worldwide for targeted restoration of degraded “high value” reef sites, and recovery of threatened taxa. Success of these practices is commonly gauged from coral propagule growth and survival, which fundamentally determines the return‐on‐effort (RRE) critical to the cost‐effectiveness and viability of restoration programs. In many cases, RRE has been optimized from past successes and failures, which therefore presents a major challenge for locations such as the Great Barrier Reef (GBR) where no local history of restoration exists to guide best practice. In establishing the first multi‐taxa coral nursery on the GBR (Opal Reef, February 2018), we constructed a novel scoring criterion from concurrent measurements of growth and survivorship to guide our relative RRE, including nursery propagule numbers (stock density). We initially retrieved RRE scores from a database of global restoration efforts to date (n = 246; 52 studies) to evaluate whether and how success commonly varied among coral taxa. We then retrieved RRE scores for Opal Reef using initial growth and survivorship data for six key coral taxa, to demonstrate that RRE scores were high for all taxa predominantly via high survivorship over winter. Repeated RRE scoring in summer is therefore needed to capture the full dynamic range of success where seasonal factors regulating growth versus survivorship differ. We discuss how RRE scoring can be easily adopted across restoration practices globally to standardize and benchmark success, but also as a tool to aid decision‐making in optimizing future propagation (and outplanting) efforts.  相似文献   
2.
Endemic species are frequently assumed to have lower genetic diversity than species with large distributions, even if closely related. This assumption is based on research from the terrestrial environment and theoretical evolutionary modelling. We test this assumption in the marine environment by analysing the mitochondrial genetic diversity of 33 coral reef fish species from five families sampled from Pacific Ocean archipelagos. Surprisingly, haplotype and nucleotide diversity did not differ significantly between endemic and widespread species. The probable explanation is that the effective population size of some widespread fishes locally is similar to that of many of the endemics. Connectivity across parts of the distribution of the widespread species is probably low, so widespread species can operate like endemics at the extreme or isolated parts of their range. Mitochondrial genetic diversity of many endemic reef fish species may not either limit range size or be a source of vulnerability.  相似文献   
3.
This study used otolith microchemistry to evaluate whether the moray eel Gymnothorax chilospilus uses different habitats throughout its life (mainly juvenile and adult phases). Of the most informative trace elements within otoliths (the twelve isotopes 23Na, 25Mg, 43Ca, 55Mn, 59Co, 60Ni, 63Cu, 66Zn, 86Sr, 111Cd, 138Ba and 208Pb) only three ratios of Ca (Na:Ca, Sr:Ca and Ba:Ca) were informative and therefore used in a multivariate regression-tree analysis. Using a multivariate partitioning, three main phases were described from profiles, including the larval life phase (leptocephali), the intermediate phase (longest section between the larval life phase and the terminal phase) and the terminal phase (final section i.e., the most recent months preceding the death of fish). According to concentrations of the three ratios to Ca, G. chilospilus can be separated into three groups during their larval life stage (very different in Sr and Na), four groups during the intermediate phase (few differences in Sr and Na) and three groups during the terminal phase (differences in Sr), illustrating that G. chilospilus inhabit different habitats during these three phases. Our results showed that the leptocephali encountered different oceanic water masses with fluctuating Sr:Ca ratios during the early larval phase. During the intermediate phase (main part of their life-span), they lived in lagoonal waters such as fringing reefs or reef flats of lagoonal islets, characterized by a lower Sr:Ca ratio. During the latter part of their life, approximately one third of G. chilospilus encountered more oceanic waters close to or at barrier reefs, suggesting possible movements of these fish along a coast-to-ocean gradient.  相似文献   
4.
Hydra is emerging as a model organism for studies of ageing in early metazoan animals, but reef corals offer an equally ancient evolutionary perspective as well as several advantages, not least being the hard exoskeleton which provides a rich fossil record as well as a record of growth and means of ageing of individual coral polyps. Reef corals are also widely regarded as potentially immortal at the level of the asexual lineage and are assumed not to undergo an intrinsic ageing process. However, putative molecular indicators of ageing have recently been detected in reef corals. While many of the large massive coral species attain considerable ages (>600 years) there are other much shorter‐lived species where older members of some populations show catastrophic mortality, compared to juveniles, under environmental stress. Other studies suggestive of ageing include those demonstrating decreased reproduction, increased susceptibility to oxidative stress and disease, reduced regeneration potential and declining growth rate in mature colonies. This review aims to promote interest and research in reef coral ageing, both as a useful model for the early evolution of ageing and as a factor in studies of ecological impacts on reef systems in light of the enhanced effects of environmental stress on ageing in other organisms.  相似文献   
5.
长春花(Catharanthus roseus)对热带珊瑚岛生理生态适应性研究   总被引:1,自引:0,他引:1  
长春花(Catharanthus roseus)是夹竹桃科的一种亚灌木植物,具有重要的药用价值和观赏价值,在前期的试验性种植中,发现长春花对热带珊瑚岛环境有很强的适应性。为了探讨长春花对热带珊瑚岛环境的生理生态适应性,该文以移植到热带珊瑚岛的长春花和生长于海南省文昌市苗圃的长春花为研究对象,对其叶片的形态解剖结构、生理学特征、营养元素含量等进行了分析。结果表明:(1)与苗圃生长的长春花和其他耐胁迫的植物相比,移植到热带珊瑚岛上的长春花具有叶片厚、栅栏组织发达、比叶面积小等形态解剖特征,这些特征有利于其光能吸收、水分储存和对环境资源的利用。(2)长春花的超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性较高,表现出较强的抗氧化性和抗胁迫能力。(3)长春花的叶绿素a和叶绿素b含量较低,可以减少过多的光能进入叶绿体光合系统,防止过剩的光能对光合系统产生伤害。(4)热带珊瑚岛土壤养分含量低,但生长在岛上的长春花叶片的营养元素含量高,表现出很强的养分吸收和利用能力。因此,长春花对干旱、贫瘠等恶劣生境具有很好的适应能力,可以作为热带珊瑚岛植被恢复工具种。  相似文献   
6.
The disruption of the coral–algae symbiosis (coral bleaching) due to rising sea surface temperatures has become an unprecedented global threat to coral reefs. Despite decades of research, our ability to manage mass bleaching events remains hampered by an incomplete mechanistic understanding of the processes involved. In this study, we induced a coral bleaching phenotype in the absence of heat and light stress by adding sugars. The sugar addition resulted in coral symbiotic breakdown accompanied by a fourfold increase of coral‐associated microbial nitrogen fixation. Concomitantly, increased N:P ratios by the coral host and algal symbionts suggest excess availability of nitrogen and a disruption of the nitrogen limitation within the coral holobiont. As nitrogen fixation is similarly stimulated in ocean warming scenarios, here we propose a refined coral bleaching model integrating the cascading effects of stimulated microbial nitrogen fixation. This model highlights the putative role of nitrogen‐fixing microbes in coral holobiont functioning and breakdown.  相似文献   
7.
Climate change and ocean acidification are altering marine ecosystems and, from a human perspective, creating both winners and losers. Human responses to these changes are complex, but may result in reduced government investments in regulation, resource management, monitoring and enforcement. Moreover, a lack of peoples’ experience of climate change may drive some towards attributing the symptoms of climate change to more familiar causes such as management failure. Taken together, we anticipate that management could become weaker and less effective as climate change continues. Using diverse case studies, including the decline of coral reefs, coastal defences from flooding, shifting fish stocks and the emergence of new shipping opportunities in the Arctic, we argue that human interests are better served by increased investments in resource management. But greater government investment in management does not simply mean more of “business‐as‐usual.” Management needs to become more flexible, better at anticipating and responding to surprise, and able to facilitate change where it is desirable. A range of technological, economic, communication and governance solutions exists to help transform management. While not all have been tested, judicious application of the most appropriate solutions should help humanity adapt to novel circumstances and seek opportunity where possible.  相似文献   
8.
Climate warming is occurring at a rate not experienced by life on Earth for 10 s of millions of years, and it is unknown whether the coral‐dinoflagellate (Symbiodinium spp.) symbiosis can evolve fast enough to ensure coral reef persistence. Coral thermal tolerance is partly dependent on the Symbiodinium hosted. Therefore, directed laboratory evolution in Symbiodinium has been proposed as a strategy to enhance coral holobiont thermal tolerance. Using a reciprocal transplant design, we show that the upper temperature tolerance and temperature tolerance range of Symbiodinium C1 increased after ~80 asexual generations (2.5 years) of laboratory thermal selection. Relative to wild‐type cells, selected cells showed superior photophysiological performance and growth rate at 31°C in vitro, and performed no worse at 27°C; they also had lower levels of extracellular reactive oxygen species (exROS). In contrast, wild‐type cells were unable to photosynthesise or grow at 31°C and produced up to 17 times more exROS. In symbiosis, the increased thermal tolerance acquired ex hospite was less apparent. In recruits of two of three species tested, those harbouring selected cells showed no difference in growth between the 27 and 31°C treatments, and a trend of positive growth at both temperatures. Recruits that were inoculated with wild‐type cells, however, showed a significant difference in growth rates between the 27 and 31°C treatments, with a negative growth trend at 31°C. There were no significant differences in the rate and severity of bleaching in coral recruits harbouring wild‐type or selected cells. Our findings highlight the need for additional Symbiodinium genotypes to be tested with this assisted evolution approach. Deciphering the genetic basis of enhanced thermal tolerance in Symbiodinium and the cause behind its limited transference to the coral holobiont in this genotype of Symbiodinium C1 are important next steps for developing methods that aim to increase coral bleaching tolerance.  相似文献   
9.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号