首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5314篇
  免费   467篇
  国内免费   337篇
  2024年   6篇
  2023年   81篇
  2022年   43篇
  2021年   138篇
  2020年   177篇
  2019年   189篇
  2018年   165篇
  2017年   159篇
  2016年   163篇
  2015年   167篇
  2014年   209篇
  2013年   346篇
  2012年   181篇
  2011年   175篇
  2010年   168篇
  2009年   249篇
  2008年   272篇
  2007年   290篇
  2006年   258篇
  2005年   228篇
  2004年   237篇
  2003年   198篇
  2002年   222篇
  2001年   205篇
  2000年   160篇
  1999年   149篇
  1998年   137篇
  1997年   125篇
  1996年   115篇
  1995年   112篇
  1994年   75篇
  1993年   101篇
  1992年   68篇
  1991年   79篇
  1990年   52篇
  1989年   40篇
  1988年   44篇
  1987年   48篇
  1986年   45篇
  1985年   43篇
  1984年   40篇
  1983年   22篇
  1982年   25篇
  1981年   28篇
  1980年   19篇
  1979年   10篇
  1978年   15篇
  1977年   8篇
  1976年   16篇
  1975年   6篇
排序方式: 共有6118条查询结果,搜索用时 15 毫秒
1.
We undertook a 2-year (2002–2004) mark–recapture study to investigate demographic performance and habitat use of salt marsh harvest mice (Reithrodontomys raviventris halicoetes) in the Suisun Marsh. We examined the effects of different wetland types and microhabitats on 3 demographic variables: density, reproductive potential, and persistence. Our results indicate that microhabitats dominated by mixed vegetation or pickleweed (Salicornia spp.) supported similar salt marsh harvest mouse densities, reproductive potential, and persistence throughout much of the year, whereas few salt marsh harvest mice inhabited upland grass-dominated microhabitats. We found that densities were higher in diked wetlands, whereas post-winter persistence was higher in tidal wetlands, and reproductive potential did not differ statistically between wetland types. Our results emphasize the importance of mixed vegetation for providing adequate salt marsh harvest mouse habitat and suggest that, despite their physiognomic and hydrological differences, both diked and tidal wetlands support salt marsh harvest mouse populations by promoting different demographic attributes. We recommend that habitat management, restoration, and enhancement efforts include areas containing mixed vegetation in addition to pickleweed in both diked and tidal wetlands. © 2011 The Wildlife Society.  相似文献   
2.
Defective interfering (DI) influenza viruses carry a large deletion in a gene segment that interferes with the replication of infectious virus; thus, such viruses have potential for antiviral therapy. However, because DI viruses cannot replicate autonomously without the aid of an infectious helper virus, clonal DI virus stocks that are not contaminated with helper virus have not yet been generated. To overcome this problem, we used reverse genetics to generate a clonal DI virus with a PB2 DI gene, amplified the clonal DI virus using a cell line stably expressing the PB2 protein, and confirmed its ability to interfere with infectious virus replication in vitro. Thus, our approach is suitable for obtaining purely clonal DI viruses, will contribute to the understanding of DI virus interference mechanisms and can be used to develop DI virus‐based antivirals.  相似文献   
3.
L. Jerling 《Plant Ecology》1988,74(2-3):161-170
Population fluctuations ofGlaux maritima, along a transect on a Baltle sea shore meadow, were recorded between 1979 and 1983. A bimodal distribution in numbers along the transect reflects the variation in factors regulating numbers: The two maintenance systems of the species, vegetative propagation and sexual reproduction play different roles. Vegetative propagation is fast and responds quickly to variations in the environment. The seeds germinate in strongly fluctuating temperatures which are triggered by disturbances such as flooding, damaging the vegetation.  相似文献   
4.
Neuropeptide Y (NPY) is an evolutionarily conserved neurosecretory molecule implicated in a diverse complement of functions across taxa and in regulating feeding behavior and reproductive maturation in Octopus. However, little is known about the precise molecular circuitry of NPY-mediated behaviors and physiological processes, which likely involve a complex interaction of multiple signal molecules in specific brain regions. Here, we examined the expression of NPY throughout the Octopus central nervous system. The sequence analysis of Octopus NPY precursor confirmed the presence of both, signal peptide and putative active peptides, which are highly conserved across bilaterians. In situ hybridization revealed distinct expression of NPY in specialized compartments, including potential “integration centers,” where visual, tactile, and other behavioral circuitries converge. These centers integrating separate circuits may maintain and modulate learning and memory or other behaviors not yet attributed to NPY-dependent modulation in Octopus. Extrasomatic localization of NPY mRNA in the neurites of specific neuron populations in the brain suggests a potential demand for immediate translation at synapses and a crucial temporal role for NPY in these cell populations. We also documented the presence of NPY mRNA in a small cell population in the olfactory lobe, which is a component of the Octopus feeding and reproductive control centers. However, the molecular mapping of NPY expression only partially overlapped with that produced by immunohistochemistry in previous studies. Our study provides a precise molecular map of NPY mRNA expression that can be used to design and test future hypotheses about molecular signaling in various Octopus behaviors.  相似文献   
5.
6.
Location within a tree was analyzed as a source of variation in Sequoia sempervirens leaf monoterpenes. No differences were found for quantitative composition or total yield/dry wt among lower, middle and upper canopy positions. The awlshaped, spirally arranged leaves of vigorous upper shoots showed small quantitative compositional differences, but not differences in total yield. The intermediate leaf form of young sprouts had the most different monoterpene quantitative composition and about three times the total yield of the above two leaf forms. Analysis of a clonal ring of 17 adult trees resulted in coefficients of variation similar to those for samples collected from different canopy levels of the same shoot. Results revealed the sources and magnitudes of experimental error in comparative studies of this species' leaf monoterpenes, and did not support the concept that somatic mutation provides an important source of variation in a large, long-lived organism such as coast redwood.  相似文献   
7.
《Cell reports》2020,30(5):1530-1541.e4
  1. Download : Download high-res image (102KB)
  2. Download : Download full-size image
  相似文献   
8.
The fecundity reduction with aging is referred as the reproductive aging which comes earlier than that of chronological aging. Since humans have postponed their childbearing age, to prolong the reproductive age becomes urgent agenda for reproductive biologists. In the current study, we examined the potential associations of α‐ketoglutarate (α‐KG) and reproductive aging in mammals including mice, swine, and humans. There is a clear tendency of reduced α‐KG level with aging in the follicle fluids of human. To explore the mechanisms, mice were selected as the convenient animal model. It is observed that a long term of α‐KG administration preserves the ovarian function, the quality and quantity of oocytes as well as the telomere maintaining system in mice. α‐KG suppresses ATP synthase and alterations of the energy metabolism trigger the nutritional sensors to down‐regulate mTOR pathway. These events not only benefit the general aging process but also maintain ovarian function and delay the reproductive decline. Considering the safety of the α‐KG as a naturally occurring molecule in energy metabolism, its utility in reproduction of large mammals including humans deserves further investigation.  相似文献   
9.
Abstract. 1. The causes and reproductive consequences of body size variation of Brachinus lateralis Dejean, a parasitic carabid beetle, were investigated.
2. Body size variation occurs within and between sites. Host size has a major influence on body size of the adult.
3. Fecundity is positively correlated with body size. Egg size is not correlated with body size.
4. Mating males tend to be larger than non-mating males. There is a positive correlation of body sizes in mating pairs.
5. Limited opportunity for host choice may maintain size variation despite the advantages of large size.
6. The non-random patterns of mating for a species without obvious intrasexual aggression suggest that subtle means of male-male competition or female choice may be important.  相似文献   
10.
There has been much recent research interest in the existence of a major axis of life‐history variation along a fast–slow continuum within almost all major taxonomic groups. Eco‐evolutionary models of density‐dependent selection provide a general explanation for such observations of interspecific variation in the "pace of life." One issue, however, is that some large‐bodied long‐lived “slow” species (e.g., trees and large fish) often show an explosive “fast” type of reproduction with many small offspring, and species with “fast” adult life stages can have comparatively “slow” offspring life stages (e.g., mayflies). We attempt to explain such life‐history evolution using the same eco‐evolutionary modeling approach but with two life stages, separating adult reproductive strategies from offspring survival strategies. When the population dynamics in the two life stages are closely linked and affect each other, density‐dependent selection occurs in parallel on both reproduction and survival, producing the usual one‐dimensional fast–slow continuum (e.g., houseflies to blue whales). However, strong density dependence at either the adult reproduction or offspring survival life stage creates quasi‐independent population dynamics, allowing fast‐type reproduction alongside slow‐type survival (e.g., trees and large fish), or the perhaps rarer slow‐type reproduction alongside fast‐type survival (e.g., mayflies—short‐lived adults producing few long‐lived offspring). Therefore, most types of species life histories in nature can potentially be explained via the eco‐evolutionary consequences of density‐dependent selection given the possible separation of demographic effects at different life stages.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号