首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   309篇
  免费   38篇
  国内免费   21篇
  2023年   11篇
  2022年   6篇
  2021年   10篇
  2020年   7篇
  2019年   8篇
  2018年   11篇
  2017年   14篇
  2016年   18篇
  2015年   9篇
  2014年   15篇
  2013年   20篇
  2012年   11篇
  2011年   8篇
  2010年   11篇
  2009年   18篇
  2008年   13篇
  2007年   14篇
  2006年   20篇
  2005年   13篇
  2004年   11篇
  2003年   8篇
  2002年   9篇
  2001年   6篇
  2000年   5篇
  1999年   4篇
  1998年   7篇
  1997年   6篇
  1996年   11篇
  1995年   8篇
  1994年   9篇
  1993年   6篇
  1992年   8篇
  1991年   6篇
  1990年   4篇
  1989年   3篇
  1988年   3篇
  1986年   1篇
  1985年   5篇
  1984年   3篇
  1982年   3篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1972年   1篇
排序方式: 共有368条查询结果,搜索用时 15 毫秒
1.
2.
Aim We investigate the long‐standing question of whether the small size of microbes allows most microbial species to colonize all suitable sites around the globe or whether their ranges are limited by opportunities for dispersal. In this study we use a modelling approach to investigate the effect of size on the probability of between‐continent dispersal using virtual microorganisms in a global model of the Earth’s atmosphere. Location Global. Methods We use a computer model of global atmospheric circulation to investigate the effect of microbe size (effective diameters of 9, 20, 40 and 60 μm) on the probability of aerial dispersal. Results We found that for smaller microbes, once airborne, dispersal is remarkably successful over a 1‐year period. The most striking results are the extensive within‐hemisphere distribution of virtual microbes of 9 and 20 μm diameter and the lack of dispersal between the Northern and Southern Hemispheres during the year‐long time‐scale of our simulations. Main conclusions Above a diameter of 20 μm wind dispersal of virtual microbes between continents becomes increasingly unlikely, and it does not occur at all (within our simulated 1‐year period) for those of 60 μm diameter. Within our simulation, the success of small microbes in long‐distance dispersal is due both to their greater abundance and to their longer time in the atmosphere – once airborne – compared with larger microbes.  相似文献   
3.
Elevated ocean temperatures can cause coral bleaching, the loss of colour from reef‐building corals because of a breakdown of the symbiosis with the dinoflagellate Symbiodinium. Recent studies have warned that global climate change could increase the frequency of coral bleaching and threaten the long‐term viability of coral reefs. These assertions are based on projecting the coarse output from atmosphere–ocean general circulation models (GCMs) to the local conditions around representative coral reefs. Here, we conduct the first comprehensive global assessment of coral bleaching under climate change by adapting the NOAA Coral Reef Watch bleaching prediction method to the output of a low‐ and high‐climate sensitivity GCM. First, we develop and test algorithms for predicting mass coral bleaching with GCM‐resolution sea surface temperatures for thousands of coral reefs, using a global coral reef map and 1985–2002 bleaching prediction data. We then use the algorithms to determine the frequency of coral bleaching and required thermal adaptation by corals and their endosymbionts under two different emissions scenarios. The results indicate that bleaching could become an annual or biannual event for the vast majority of the world's coral reefs in the next 30–50 years without an increase in thermal tolerance of 0.2–1.0°C per decade. The geographic variability in required thermal adaptation found in each model and emissions scenario suggests that coral reefs in some regions, like Micronesia and western Polynesia, may be particularly vulnerable to climate change. Advances in modelling and monitoring will refine the forecast for individual reefs, but this assessment concludes that the global prognosis is unlikely to change without an accelerated effort to stabilize atmospheric greenhouse gas concentrations.  相似文献   
4.
Climate change will alter the abundance and distribution of species. Predicting these shifts is a challenge for ecologists and essential information for the formation of public policy. Here, I use a mechanistic mathematical model of the interaction between grass growth physiology and aphid population dynamics, coupled with the climate change projections from the UK's Hadley Centre HadCM3 global circulation model (GCM) and Canada's Center for Climate Modeling and Analysis CGCM2 GCM to predict the changes in the abundance and distribution of summer cereal aphid populations in wheat-growing regions of Canada. When used with the HadCM3 projections, the model predicts a latitudinal shift northward in abundances but there is longitudinal variation as well. However, when used with the CGCM2 projections the model predicts that continental regions will see a decline while coastal regions will see an increase in summer cereal aphid populations. These effects are stronger under the higher emissions scenarios.  相似文献   
5.
The epicardium and coronary vessels originate from progenitor cells in the proepicardium. Here we show that Tbx18, a T-box family member highly expressed in the proepicardium, controls critical early steps in coronary development. In Tbx18−/− mouse embryos, both the epicardium and coronary vessels exhibit structural and functional defects. At E12.5, the Tbx18-deficient epicardium contains protrusions and cyst-like structures overlying a disorganized coronary vascular plexus that contains ectopic structures resembling blood islands. At E13.5, the left and right coronary stems form correctly in mutant hearts. However, analysis of PECAM-1 whole mount immunostaining, distribution of SM22αlacZ/+ activity, and analysis of coronary vascular casts suggest that defective vascular plexus remodeling produces a compromised arterial network at birth consisting of fewer distributing conduit arteries with smaller lumens and a reduced capacity to conduct blood flow. Gene expression profiles of Tbx18/ hearts at E12.5 reveal altered expression of 79 genes that are associated with development of the vascular system including sonic hedgehog signaling components patched and smoothened, VEGF-A, angiopoietin-1, endoglin, and Wnt factors compared to wild type hearts. Thus, formation of coronary vasculature is responsive to Tbx18-dependent gene targets in the epicardium, and a poorly structured network of coronary conduit vessels is formed in Tbx18 null hearts due to defects in epicardial cell signaling and fate during heart development. Lastly, we demonstrate that Tbx18 possesses a SRF/CArG box dependent repressor activity capable of inhibiting progenitor cell differentiation into smooth muscle cells, suggesting a potential function of Tbx18 in maintaining the progenitor status of epicardial-derived cells.  相似文献   
6.

Background

Heat stress induces various physiological changes and so could influence ocular circulation. This study examined the effect of heat stress on ocular blood flow.

Findings

Ocular blood flow, end-tidal carbon dioxide (PETCO2) and blood pressure were measured for 12 healthy subjects wearing water-perfused tube-lined suits under two conditions of water circulation: (1) at 35°C (normothermia) for 30 min and (2) at 50°C for 90 min (passive heat stress). The blood-flow velocities in the superior temporal retinal arteriole (STRA), superior nasal retinal arteriole (SNRA), and the retinal and choroidal vessels (RCV) were measured using laser-speckle flowgraphy. Blood flow in the STRA and SNRA was calculated from the integral of a cross-sectional map of blood velocity. PETCO2 was clamped at the normothermia level by adding 5% CO2 to the inspired gas. Passive heat stress had no effect on the subjects’ blood pressures. The blood-flow velocity in the RCV was significantly lower after 30, 60 and 90 min of passive heat stress than the normothermic level, with a peak decrease of 18 ± 3% (mean ± SE) at 90 min. Blood flow in the STRA and SNRA decreased significantly after 90 min of passive heat stress conditions, with peak decreases of 14 ± 3% and 14 ± 4%, respectively.

Conclusion

The findings of this study suggest that passive heat stress decreases ocular blood flow irrespective of the blood pressure or arterial partial pressure of CO2.  相似文献   
7.
Professor Y.C. Fung has made tremendous impacts on science, engineering and humanity through his research and its applications, by setting the highest standards, through educating many students and their students, and providing his exemplary leadership. He has applied his profound knowledge and elegant analytical methods to the study of biomedical problems with rigor and excellence. He established the foundations of biomechanics in living tissues and organs. Through his vision of the power of “making models” to explain and predict biological phenomena, Dr. Fung opened up new vista for bioengineering, from organs-systems to molecules-genes, and has provided the foundation of research activities in many institutions in the United States and the world. He has made outstanding contributions to education in bioengineering, service to professional organizations, and translation to industry and clinical medicine. He is widely recognized as the Father of Biomechanics and the leading Bioengineer in the world. His extraordinary achievements and commands in science, engineering and the arts make him a Renaissance Man for the world.  相似文献   
8.
Peripheral artery disease (PAD) is associated with an increased risk of adverse cardiovascular events, impaired lower extremity blood flow and microvascular perfusion abnormalities in the calf muscles which can be determined with contrast-enhanced magnetic resonance imaging (CE-MRI). We developed a computational model of the microvascular perfusion in the calf muscles. We included 20 patients (10 PAD, 10 controls) and utilized the geometry, mean signal intensity and arterial input functions from CE-MRI calf muscle perfusion scans. The model included the microvascular pressure (pv), outflow filtration coefficient (OFC), transfer rate constant (kt), porosity (φ), and the interstitial permeability (Ktissue). Parameters were fitted and the simulations were compared across PAD patients and controls. Intra-observer reproducibility of the simulated mean signal intensities was excellent (intraclass correlation coefficients >0.995). kt and Ktissue were higher in PAD patients compared with controls (4.72 interquartile range (IQR) 3.33, 5.56 vs. 2.47 IQR 2.10, 2.85; p = 0.003; and 3.68 IQR 3.18, 4.41 vs. 1.81 IQR 1.81, 1.81; p < 0.001). Conversely, porosity (φ) was lower in PAD patients compared with controls (0.52 IQR 0.49, 0.54 vs. 0.61 IQR 0.58, 0.64; p = 0.016). Porosity (φ) was correlated with the ankle brachial index (r = 0.64, p = 0.011). The proposed computational microvascular model is robust and reproducible, and essential model parameters differ significantly between PAD patients and controls.  相似文献   
9.
SUMMARY 1. Circulating and locally formed Angiotensin II regulates the cerebral circulation through stimulation of AT1 receptors located in cerebrovascular endothelial cells and in brain centers controlling cerebrovascular flow.2. The cerebrovascular autoregulation is designed to maintain a constant blood flow to the brain, by vasodilatation when blood pressure decreases and vasoconstriction when blood pressure increases.3. During hypertension, there is a shift in the cerebrovascular autoregulation to the right, in the direction of higher blood pressures, as a consequence of decreased cerebrovascular compliance resulting from vasoconstriction and pathological growth. In hypertension, when perfusion pressure decreases as a consequence of blockade of a cerebral artery, reduced cerebrovascular compliance results in more frequent and more severe strokes with a larger area of injured tissue.4. There is a cerebrovascular angiotensinergic overdrive in genetically hypertensive rats, manifested as an increased expression of cerebrovascular AT1 receptors and increased activity of the brain Angiotensin II system. Excess AT1 receptor stimulation is a main factor in the cerebrovascular pathological growth and decreased compliance, the alteration of the cerebrovascular eNOS/iNOS ratio, and in the inflammatory reaction characteristic of cerebral blood vessels in genetic hypertension. All these factors increase vulnerability to brain ischemia and stroke.5. Sustained blockade of AT1 receptors with peripheral and centrally active AT1 receptor antagonists (ARBs) reverses the cerebrovascular pathological growth and inflammation, increases cerebrovascular compliance, restores the eNOS/iNOS ratio and decreases cerebrovascular inflammation. These effects result in a reduction of the vulnerability to brain ischemia, revealed, when an experimental stroke is produced, in protection of the blood flow in the zone of penumbra and substantial reduction in neuronal injury.6. The protection against ischemia resulting is related to inhibition of the Renin–Angiotensin System and not directly related to the decrease in blood pressure produced by these compounds. A similar decrease in blood pressure as a result of the administration of β-adrenergic receptor and calcium channel blockers does not protect from brain ischemia.7. In addition, sustained AT1 receptor inhibition enhances AT2 receptor expression, associated with increased eNOS activity and NO formation followed by enhanced vasodilatation. Direct AT1 inhibition and indirect AT2 receptor stimulation are associated factors normalizing cerebrovascular compliance, reducing cerebrovascular inflammation and decreasing the vulnerability to brain ischemia.8. These results strongly suggest that inhibition of AT1 receptors should be considered as a preventive therapeutic measure to protect the brain from ischemia, and as a possible novel therapy of inflammatory conditions of the brain.  相似文献   
10.
土壤微生物量磷(Microbial Biomass Phosphorus, MBP)是土壤磷组分中最为活跃的形态,在土壤磷素的形态转化与生物地球化学循环过程中起着关键作用,是植物可利用磷的重要来源。研究土壤MBP库容的大小对于充分认识微生物的固磷潜力和掌握土壤磷素循环与转化能力意义重大。以我国北方农田3种典型的土壤-作物体系为研究对象,基于定点采样,通过分析测定采集的362个表层(0—30 cm)土壤样品来量化不同土壤-作物体系MBP库容的大小。结果表明:黑土-春玉米、潮土-冬小麦/夏玉米、灰漠土-棉花体系表层土壤MBP平均含量分别为17.36、14.45、8.75 mg/kg,且不同土壤-作物体系间MBP含量存在显著差异;3种土壤-作物体系表层土壤(0—30 cm)MBP库容的大小分别为83.60、54.26、39.80 kg P/hm~2,其储存的磷在数量上相当于当季作物需磷量的1.10—2.73倍,表明土壤MBP库是农田生态系统中一个不容忽视的巨大有效养分磷储库。其库容的大小受土壤性质和气候因素的共同影响,土壤pH、有机碳、年均气温和年均降雨量是我国北方农田土壤MBP库容大小的主...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号