首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121篇
  免费   26篇
  国内免费   6篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   4篇
  2019年   6篇
  2018年   8篇
  2017年   5篇
  2016年   7篇
  2015年   8篇
  2014年   9篇
  2013年   7篇
  2012年   10篇
  2011年   4篇
  2010年   8篇
  2009年   4篇
  2008年   8篇
  2007年   10篇
  2006年   10篇
  2005年   5篇
  2004年   7篇
  2003年   5篇
  2002年   4篇
  2001年   3篇
  2000年   4篇
  1998年   2篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1988年   1篇
排序方式: 共有153条查询结果,搜索用时 93 毫秒
1.
Invertebrate biomonitoring can reveal crucial information about the status of restoration projects; however, it is routinely underused because of the high level of taxonomic expertise and resources required. Invertebrate DNA metabarcoding has been used to characterize invertebrate biodiversity but its application in restoration remains untested. We use DNA metabarcoding, a new approach for restoration assessment, to explore the invertebrate composition from pitfall traps at two mine site restoration chronosequences in southwestern Australia. Invertebrates were profiled using two cytochrome oxidase subunit 1 assays to investigate invertebrate biodiversity. The data revealed differences between invertebrate communities at the two mines and between the different age plots of the chronosequences. Several characteristic taxa were identified for each age within the chronosequence, including springtails within the youngest sites (Order: Collembola) and millipedes within the oldest and reference sites (Order: Julida). This study facilitates development of a molecular “toolkit” for the monitoring of ecological restoration projects. We suggest that a metabarcoding approach shows promise in complementing current monitoring practices that rely on alpha taxonomy.  相似文献   
2.
In Low Arctic tundra, thermal erosion of ice‐rich permafrost soils (thermokarst) has increased in frequency since the 1980s. Retrogressive thaw slumps (RTS) are thermokarst disturbances forming large open depressions on hillslopes through soil wasting and vegetation displacement. Tall (>0.5 m) deciduous shrubs have been observed in RTS a decade after disturbance. RTS may provide conditions suitable for seedling recruitment, which may contribute to Arctic shrub expansion. We quantified in situ seedling abundance, and size and viability of soil seedbanks in greenhouse trials for two RTS chronosequences near lakes on Alaska's North Slope. We hypothesized recent RTS provide microsites for greater recruitment than mature RTS or undisturbed tundra. We also hypothesized soil seedbanks demonstrate quantity–quality trade‐offs; younger seedbanks contain smaller numbers of mostly viable seed that decrease in viability as seed accumulates over time. We found five times as many seedlings in younger RTS as in older RTS, including birch and willow, and no seedlings in undisturbed tundra. Higher seedling counts were associated with bare soil, warmer soils, higher soil available nitrogen, and less plant cover. Seedbank viability was unrelated to size. Older seedbanks were larger at one chronosequence, with no difference in percent germination. At the other chronosequence, germination was lower from older seedbanks but seedbank size was not different. Seedbank germination was positively associated with in situ seedling abundance at one RTS chronosequence, suggesting postdisturbance revegetation from seedbanks. Thermal erosion may be important for recruitment in tundra by providing bare microsites that are warmer, more nutrient‐rich, and less vegetated than in undisturbed ground. Differences between two chronosequences in seedbank size, viability, and species composition suggest disturbance interacts with local conditions to form seedbanks. RTS may act as seedling nurseries to benefit many Arctic species as climate changes, particularly those that do not produce persistent seed.  相似文献   
3.
Forest restoration by planting trees often accelerates succession, but the trajectories toward reference ecosystems have rarely been evaluated. Using a chronosequence (4–53 years) of 26 riparian forest undergoing restoration in the Brazilian Atlantic Forest, we modeled how the variables representing forest structure, tree species richness and composition, and the proportion of plant functional guilds change through time. We also estimated the time required for these variables to reach different types of reference ecosystems: old‐growth forest (OGF), degraded forest, and secondary forest. Among the attributes which follow a predictable trajectory over time are: the basal area, canopy cover, density and tree species richness, as well as proportions of shade tolerant and slow growing species or individuals. Most of the variation in density of pteridophythes, lianas, shrubs and phorophythes, proportion of animal‐dispersed individuals, rarefied richness and floristic similarity with reference ecosystems remain unexplained. Estimated time to reach the reference ecosystems is, in general, shorter for structural attributes than for species composition or proportion of functional guilds. The length of this time varies among the three types of reference ecosystems for most attributes. For instance, tree species richness and proportion of shade tolerant or slow growing individuals become similar to secondary forests in about 40 years, but is estimated to take 70 years or more to reach the OGF. Of all the variables considered, canopy cover, basal area, density, and richness of the understory—by their ecological relevance and predictability—are recommended as ecological indicators for monitoring tropical forest restoration success.  相似文献   
4.
Hurricane‐caused tree mortality in tropical dry forests occurs predominantly in early successional species. Consequently, hurricanes may accelerate succession in these forests. Forest regeneration, however, must be measured over an extended posthurricane time period to demonstrate this pattern. In this study, we recorded tree seedlings in 19 Florida Keys forests during May–August 1995, 3 years after Hurricane Andrew. For these forests—spanning a chronosequence from 14 to over 100 years since the most recent clearing—we used weighted averaging regression on relative abundances of pre‐hurricane trees to calculate a successional age optimum for each species; and used weighted averaging calibration to calculate inferred successional ages for stands based on pre‐hurricane trees and on posthurricane seedlings. To test the hypothesis that successional stage of seedlings exceeded successional stage of pre‐hurricane trees, we compared inferred stand ages based on posthurricane seedlings with those based on pre‐hurricane trees. Across the study area, inferred stand ages based on posthurricane seedlings were greater than those based on pre‐hurricane trees (P < 0.005); however, more seedlings in the youngest stands were early successional than in older stands. Of 29 species present both as pre‐hurricane trees and posthurricane seedlings, 23 had animal‐dispersed seeds. These results provide evidence that: (1) hurricanes do not ‘reset’ succession, and may accelerate succession; and (2) a strong legacy of stand successional age influences seedling assemblages in these forests.  相似文献   
5.
Glacier forefields are ideal ecosystems to study the development of nutrient cycles as well as single turnover processes during soil development. In this study, we examined the ecology of the microbial nitrogen (N) cycle in bulk soil samples from a chronosequence of the Damma glacier, Switzerland. Major processes of the N cycle were reconstructed on the genetic as well as the potential enzyme activity level at sites of the chronosequence that have been ice-free for 10, 50, 70, 120 and 2000 years. In our study, we focused on N fixation, mineralization (chitinolysis and proteolysis), nitrification and denitrification. Our results suggest that mineralization, mainly the decomposition of deposited organic material, was the main driver for N turnover in initial soils, that is, ice-free for 10 years. Transient soils being ice-free for 50 and 70 years were characterized by a high abundance of N fixing microorganisms. In developed soils, ice-free for 120 and 2000 years, significant rates of nitrification and denitrification were measured. Surprisingly, copy numbers of the respective functional genes encoding the corresponding enzymes were already high in the initial phase of soil development. This clearly indicates that the genetic potential is not the driver for certain functional traits in the initial phase of soil formation but rather a well-balanced expression of the respective genes coding for selected functions.  相似文献   
6.
In assessing the effectiveness of ecological restoration actions, outcomes evaluation using a multi‐taxa approach can greatly contribute to a clearer understanding of their success/failure. Since comprehensive biodiversity assessments are rarely possible, choosing taxa groups that are indicative of the ecosystem's structural and functional recovery is of major importance. Our goal was to evaluate the success of revegetation actions performed in a Mediterranean limestone quarry, using plants and epigean beetles as indicators. We compared their abundance, diversity, and community composition between revegetated sites aged 5, 13, and 19 years and a natural reference. Total plant cover significantly increased with restoration age and quickly reached reference values. However, native woody species cover dropped in the oldest site, while non‐native species became dominant. The abundance of beetles was always lower in restoration sites when compared to the reference, increasing with age, although not significantly. The richness of both plant species and beetle families was lower in restoration sites and did not show any trend towards the reference values. Finally, using nonmetric multidimensional scaling, the composition of plant and beetle communities from restoration sites showed a clear separation from the reference. Restoration efforts have successfully modified post‐quarry sites, but considerable differences remain, probably largely related to the use of the non‐native species Pinus halepensis in restoration plans. P. halepensis high cover in restoration sites greatly affects the structure of the ecosystem, and most likely its functioning too, as well as related ecosystem services, causing divergence from the reference values and compromising restoration success.  相似文献   
7.
Evidence regarding the ability of agroforests to conserve biological diversity has been mixed; they tend to maintain avian communities with species richness similar to that of undisturbed forest ecosystems but generally do not completely preserve community composition. Using a combination of occupancy modeling and non-metric multidimensional scaling on point-count data, we assessed changes in avian community diversity and composition along a successional gradient in traditional Lacandon Maya agroforests and compared them to protected areas in the region. Bird species richness and diversity in Lacandon agroforests peaked in early secondary forest stages. These agroforests' mean Shannon–Weiner diversity was 5% higher than that of nearby protected areas, but their species richness was similar. Community composition in Lacandon agroforests changed throughout succession, with earlier stages supporting communities distinctly characterized by generalist species, while subsequent, less-intensively managed stages tended to support more forest-dwellers. The bird community observed in even the most mature secondary forest stages in Lacandon agroforests differed from that of undisturbed rain forest ecosystems. These results demonstrate the potential of traditional Lacandon agroforestry management to conserve avian biodiversity while ensuring food sovereignty for farmers. However, because the community composition of early-successional stages was different than later stages, shortening fallow cycles and reducing forest cover to increase agricultural production will limit the species this system can support. This study illustrates the value of incorporating traditional agroecosystems into conservation planning as well as maintaining protected areas, because the latter serve as refugia for species that require undisturbed forest habitat in an agroecological matrix.  相似文献   
8.
9.
Aim The spruce–moss forest is the main forest ecosystem of the North American boreal forest. We used stand structure and fire data to examine the long‐term development and growth of the spruce–moss ecosystem. We evaluate the stability of the forest with time and the conditions needed for the continuing regeneration, growth and re‐establishment of black spruce (Picea mariana) trees. Location The study area occurs in Québec, Canada, and extends from 70°00′ to 72°00′ W and 47°30′ to 56°00′ N. Methods A spatial inventory of spruce–moss forest stands was performed along 34 transects. Nineteen spruce–moss forests were selected. A 500 m2 quadrat at each site was used for radiocarbon and tree‐ring dating of time since last fire (TSLF). Size structure and tree regeneration in each stand were described based on diameter distribution of the dominant and co‐dominant tree species [black spruce and balsam fir (Abies balsamea)]. Results The TSLF of the studied forests ranges from 118 to 4870 cal. yr bp . Forests < 325 cal. yr bp are dominated by trees of the first post‐fire cohort and are not yet at equilibrium, whereas older forests show a reverse‐J diameter distribution typical of mature, old‐growth stands. The younger forests display faster height and radial growth‐rate patterns than the older forests, due to factors associated with long‐term forest development. Each of the stands examined established after severe fires that consumed all the soil organic material. Main conclusions Spruce–moss forests are able to self‐regenerate after fires that consume the organic layer, thus allowing seed regeneration at the soil surface. In the absence of fire the forests can remain in an equilibrium state. Once the forests mature, tree productivity eventually levels off and becomes stable. Further proof of the enduring stability of these forests, in between fire periods, lies in the ages of the stands. Stands with a TSLF of 325–4870 cal. yr bp all exhibited the same stand structure, tree growth rates and species characteristics. In the absence of fire, the spruce–moss forests are able to maintain themselves for thousands of years with no apparent degradation or change in forest type.  相似文献   
10.
Radiocarbon signatures (Δ14C) of carbon dioxide (CO2) provide a measure of the age of C being decomposed by microbes or respired by living plants. Over a 2‐year period, we measured Δ14C of soil respiration and soil CO2 in boreal forest sites in Canada, which varied primarily in the amount of time since the last stand‐replacing fire. Comparing bulk respiration Δ14C with Δ14C of CO2 evolved in incubations of heterotrophic (decomposing organic horizons) and autotrophic (root and moss) components allowed us to estimate the relative contributions of O horizon decomposition vs. plant sources. Although soil respiration fluxes did not vary greatly, differences in Δ14C of respired CO2 indicated marked variation in respiration sources in space and time. The 14C signature of respired CO2 respired from O horizon decomposition depended on the age of C substrates. These varied with time since fire, but consistently had Δ14C greater (averaging ~120‰) than autotrophic respiration. The Δ14C of autotrophically respired CO2 in young stands equaled those expected for recent photosynthetic products (70‰ in 2003, 64‰ in 2004). CO2 respired by black spruce roots in stands >40 years old had Δ14C up to 30‰ higher than recent photosynthates, indicating a significant contribution of C stored at least several years in plants. Decomposition of O horizon organic matter made up 20% or less of soil respiration in the younger (<40 years since fire) stands, increasing to ~50% in mature stands. This is a minimum for total heterotrophic contribution, since mineral soil CO2 had Δ14C close to or less than those we have assigned to autotrophic respiration. Decomposition of old organic matter in mineral soils clearly contributed to soil respiration in younger stands in 2003, a very dry year, when Δ14C of soil respiration in younger successional stands dropped below those of the atmospheric CO2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号