首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   634篇
  免费   77篇
  国内免费   35篇
  2023年   7篇
  2022年   16篇
  2021年   7篇
  2020年   13篇
  2019年   11篇
  2018年   13篇
  2017年   22篇
  2016年   26篇
  2015年   18篇
  2014年   24篇
  2013年   64篇
  2012年   32篇
  2011年   32篇
  2010年   31篇
  2009年   37篇
  2008年   25篇
  2007年   24篇
  2006年   35篇
  2005年   20篇
  2004年   26篇
  2003年   24篇
  2002年   18篇
  2001年   21篇
  2000年   15篇
  1999年   21篇
  1998年   11篇
  1997年   11篇
  1996年   9篇
  1995年   18篇
  1994年   12篇
  1993年   11篇
  1992年   11篇
  1991年   8篇
  1990年   5篇
  1989年   2篇
  1988年   4篇
  1987年   4篇
  1986年   3篇
  1985年   11篇
  1984年   13篇
  1983年   13篇
  1982年   7篇
  1981年   5篇
  1979年   3篇
  1976年   1篇
  1974年   1篇
  1950年   1篇
排序方式: 共有746条查询结果,搜索用时 15 毫秒
1.
Plant developmental processes involving modifications to cell wall structure, such as cell expansion, organ abscission and fruit ripening, are accompanied by increased enzyme activity and mRNA abundance of endo-1,4--glucanases (EGases). An EGase cDNA clone, Ce14, isolated from tomato (Lycopersicon esculentum) has been shown to be identical to a tomato pistil-predominant EGase cDNA, TPP18. In addition to its previously reported expression during certain stages of early pistil development, Ce14 mRNA was also detected at high levels in the growing zones of etiolated hypocotyls (about 2.5-fold less than in pistils) and in young expanding leaves (about 3.5-fold less than in pistils). The abundance of Ce14 mRNA declined precipitously in older tissues as cells became fully expanded, and was barely detectable in mature vegetative tissues. Ce14 mRNA abundance was also low in abscission zones, and did not increase as abscission progressed. In fruit, Ce14 mRNA was present at low levels during fruit expansion, but was essentially absent during subsequent fruit development and ripening. Treatment of etiolated hypocotyls with ethylene or high concentrations of auxin sufficient to induce rapid lateral cell expansion and hypocotyl swelling also brought about an approximate doubling of Ce14 mRNA abundance, suggesting that Ce14 mRNA accumulation may be promoted directly or indirectly by ethylene. Thus, accumulation of Ce14 mRNA was found to be correlated with rapid cell expansion in pistils, hypocotyls and leaves.  相似文献   
2.
3.
Abstract

Fungi of the Trichoderma species are valued industrial enzymes in support of the ‘zero-waste’ technology to convert agro-industrial biomass into valuable products, i.e. nanocellulose (NC). In this study, an in silico approach using substrate docking and molecular dynamic (MD) simulation was used to predict the order of which the multilayers of cellulosic polymers, i.e. lignin, hemicellulose and cellulose in oil palm leaves (OPL) are degraded by fungal enzymes, endocellulase and exocellulase. The study aimed to establish the catalytic tendencies of the enzymes to optimally degrade the cellulosic components of OPL for high yield production of NC. Energy minimized endocellulase and exocellulase models revealed satisfactory scores of PROCHECK (90.0% and 91.2%), Verify3D (97.23% and 98.85%) and ERRAT (95.24% and 91.00%) assessments. Active site prediction by blind docking, COACH meta-server and multiple sequence alignment indicated the catalytic triads for endocellulase and exocellulase were Ser116–His205–Glu249 and Ser382–Arg124–Asp385, respectively. Binding energy of endocellulase docked with hemicellulose (?6.0 ? kcal mol?1) was the most favourable followed by lignin (?5.6 ? kcal mol?1) and cellulose (?4.4 ? kcal mol?1). Exocellulase, contrarily, bonded favorably with lignin (?8.7 ? kcal mol?1), closely followed by cellulose (?8.5 ? kcal mol?1) and hemicellulose (?8.4 ? kcal mol?1). MDs simulations showed that interactions of complexes, endocellulase–hemicellulose and the exocellulase–cellulose being the most stable. Thus, the findings of the study successfully identified the specific actions of sugar-acting enzymes for NC production.

Communicated by Ramaswamy H. Sarma  相似文献   
4.
Cellulase, an enzymatic complex that synergically promotes the degradation of cellulose to glucose and cellobiose, free or adsorbed onto Si/SiO2 wafers at 60 °C has been employed as catalyst in the hydrolysis of microcrystalline cellulose (Avicel), microcrystalline cellulose pre-treated with hot phosphoric acid (CP), cotton cellulose (CC) and eucalyptus cellulose (EC). The physical characteristics such as index of crystallinity (IC), degree of polymerization (DP) and water sorption values were determined for all samples. The largest conversion rates of cellulose into the above-mentioned products using free cellulase were observed for samples with the largest water sorption values; conversion rates showed no correlation with either IC or DP of the biopolymer. Cellulose with large water sorption value possesses large pore volumes, hence higher accessibility. The catalytic efficiency of immobilized cellulase could not be correlated with the physical characteristics of cellulose samples. The hydrolysis rates of the same cellulose samples with immobilized cellulase were lower than those by the free enzyme, due to the diffusion barrier (biopolymer chains approaching to the immobilized enzyme) and less effective contact between the enzyme active site and its substrate. Immobilized cellulase, unlike its free counterpart, can be recycled at least six times without loss of catalytic activity, leading to higher overall cellulose conversion.  相似文献   
5.
Application of mefluidide (N-[2,4-dimethyl-5-([(trifluoromethyl)sulfonyl]amino) phenyl]acetamide) inhibits plant development in perennial grasses. This study examined the effect of mefluidide on the morphological development and digestibility of sorghum. In the greenhouse, 5.9 × 10–5 g active ingredient (a.i.) plant–1 applied at the seedling, eight-leaf and boot stages reduced mean plant height 70%, 59%, and 2%, respectively. Heights were also reduced 14%, 15% and 35% by 5.9 × 10–8, 5.9 × 10–7 and 5.9 × 10–6 gram a.i. plant–1 applied at the eight-leaf stage. Field application of 0.26 or 0.52 kg ha–1 mefluidide at either the eight-leaf or flagleaf stage reduced mean plant height of all cultivars. Basal tiller numbers increased 319% 28 d, and dry matter production was reduced 65% 42 d following mefluidide application at the eight-leaf stage. Treated stems were 34% higher and treated leaves were 7% higher in cellulase dry matter digestibility than control plants following mefluidide application at the eight-leaf stage. These results indicate that mefluidide application to vegetative stages in sorghum may enhance the forage value of the plants while it inhibits normal plant growth.  相似文献   
6.
Tween 80 (0.1%, v/v) added to Thermomonospora curvata growing in minimal medium caused a transient lowering of the dry cell mass, decreased the optimal growth temperature of the thermophile from 62 to 54°C, and increased extracellular esterase activity. Cells grown in the presence of Tween 80 had decreased concentrations of branched chain fatty acids and increased concentrations of oleic acid. The detergent removed surface protuberances from mycelia and increased the liberation of enzymes active against crystalline cellulose, but did not stimulate liberation of enzymes active against carboxymethylcellulose, starch or pectin.  相似文献   
7.
8.
目的:预处理对木质纤维素降解的影响.方法:从土壤中分离筛选到高纤维素酶活的黏细菌菌株So ce sh1008.该菌具有CMC酶活(CMCase)及微晶纤维素酶活性.研究NaOH联合黏细菌降解盐蒿、稻草、棉花秸秆和甘蔗渣四种木质纤维素的情况.结果:碱(2% NaOH) -黏细菌处理的方法优于黏细菌-碱的方法,其中降解棉花秸秆降解效果最明显,以5.0g木质纤维素为原料,其最终干重损失达2.1g,溶液中总糖含量和还原糖含量均值分别为12.8 mg/mL和0.93 mg/mL.酵母菌发酵产乙醇的研究结果表明,最佳发酵时间为47h,碱-黏细菌甘蔗渣降解液发酵效果最好,乙醇产出达6.0%.结论:黏细菌联合2% NaOH能有效降解甘蔗渣,提高乙醇产量.  相似文献   
9.
Abstract

The impacts of two hybrid cloned commercial cellulases designed for detergency on cotton fibres were compared. HiCel45 has a family 45 catalytic domain and a fungal cellulose binding module (CBM) from the fungus Humicola insolens. BaCel5 has a family 5 catalytic domain and a fungal CBM from Bacillus spp. BaCel5 bound irreversibly to cellulose under the buffer conditions tested while HiCel45 was found to bind reversibly to cellulose because it showed low adsorption. BaCel5 seems to yield more activity towards cotton than HiCel45 under mild stirring conditions, but under strong mechanical agitation both enzymes produce similar amount of sugars. HiCel45 had a more progressive production of residual reducing ends on the fabric than BaCel5. These studies seem to indicate that HiCel45 is a more cooperative enzyme with detergent processes where high mechanical agitation is needed.  相似文献   
10.
对根霉所产纤维素酶酶系进行了分析并研究了部分酶学性质。实验选择超滤和凝胶柱分离相结合的方式提纯纤维素酶,结果显示根霉TC1653纤维素酶系是一个完全酶系,具有一个较为明显的内切葡聚糖酶组分。β-葡萄糖苷酶组分的最适反应温度为70℃,温度高于70℃时,活性迅速下降,但在这种高温下具有最高反应活性的酶很少见,很可能又是一种新的β-葡萄糖苷酶。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号