首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7722篇
  免费   1397篇
  国内免费   1931篇
  2023年   306篇
  2022年   215篇
  2021年   204篇
  2020年   449篇
  2019年   460篇
  2018年   515篇
  2017年   494篇
  2016年   461篇
  2015年   456篇
  2014年   481篇
  2013年   577篇
  2012年   399篇
  2011年   463篇
  2010年   302篇
  2009年   400篇
  2008年   393篇
  2007年   426篇
  2006年   412篇
  2005年   348篇
  2004年   321篇
  2003年   308篇
  2002年   314篇
  2001年   264篇
  2000年   224篇
  1999年   207篇
  1998年   185篇
  1997年   140篇
  1996年   148篇
  1995年   141篇
  1994年   146篇
  1993年   103篇
  1992年   129篇
  1991年   69篇
  1990年   81篇
  1989年   70篇
  1988年   63篇
  1987年   40篇
  1986年   47篇
  1985年   56篇
  1984年   34篇
  1983年   17篇
  1982年   42篇
  1981年   25篇
  1980年   22篇
  1979年   22篇
  1978年   19篇
  1977年   6篇
  1976年   19篇
  1975年   6篇
  1958年   7篇
排序方式: 共有10000条查询结果,搜索用时 171 毫秒
1.
An advanced electro-active dry adhesive,which was composed of a mushroom-shaped fibrillar dry adhesive array actuated by an Ionic Polymer Metal Composite (IPMC) artificial muscle reinforced with nitrogen-doped carbon nanocages (NCNCs),was developed to imitate the actuation of a gecko's toe.The properties of the NCNC-reinforced Nafion membrane,the electromechanical properties of the NCNC-reinforced IPMC,and the related electro-active adhesion ability were investigated.The NCNCs were uniformly dispersed in the 0.1 wt% NCNC/Nafion membrane,and there was a seamless connection with no clear interface between the dry adhesive and the IPMC.Our 0.1 wt% NCNC/Nafion-IPMC actuator shows a displacement and force that are 1.6-2 times higher than those of the recast Nafion-IPMC.This is due to the increased water uptake (25.39%) and tensile strength (24.5 MPa) of the specific 3D hollow NCNC-reinforced Nafion membrane,as well as interactions between the NCNCs and the sulfonated groups of the Nafion.The NCNC/Nafion-IPMC was used to effectively actuate the mushroom-shaped dry adhesive.The normal adhesion forces were 7.85 mN,12.1 mN,and 51.7 mN at sinusoidal voltages of 1.5 V,2.5 V,and 3.5 V,respectively,at 0.1 Hz.Under the bionic leg trail,the normal and shear forces were approximately 713.5 mN (159 mN·cm-2) and 1256.6 mN (279 mN·cm-2),respectively,which satisfy the required adhesion.This new electro-active dry adhesive can be applied for active,distributed actuation and flexible grip in robots.  相似文献   
2.
For the first time, a fast heating–cooling process is reported for the synthesis of carbon‐coated nickel (Ni) nanoparticles on a reduced graphene oxide (RGO) matrix (nano‐Ni@C/RGO) as a high‐performance H2O2 fuel catalyst. The Joule heating temperature can reach up to ≈2400 K and the heating time can be less than 0.1 s. Ni microparticles with an average diameter of 2 µm can be directly converted into nanoparticles with an average diameter of 75 nm. The Ni nanoparticles embedded in RGO are evaluated for electro‐oxidation performance as a H2O2 fuel in a direct peroxide–peroxide fuel cell, which exhibits an electro‐oxidation current density of 602 mA cm?2 at 0.2 V (vs Ag/AgCl), ≈150 times higher than the original Ni microparticles embedded in the RGO matrix (micro‐Ni/RGO). The high‐temperature, fast Joule heating process also leads to a 4–5 nm conformal carbon coating on the surface of the Ni nanoparticles, which anchors them to the RGO nanosheets and leads to an excellent catalytic stability. The newly developed nano‐Ni@C/RGO composites by Joule heating hold great promise for a range of emerging energy applications, including the advanced anode materials of fuel cells.  相似文献   
3.
采用标准地调查和生物量实测方法,研究了湖南省桃江县毛竹林生态系统生物量、碳含量、碳储量及空间分布格局。结果表明,不同年龄毛竹林生态系统总生物量分别为:28.147、30.889 t/hm~2和57.763 t/hm~2,其中竹林层生物量为20.254、25.036、55.685 t/hm~2,各器官生物量均以竹竿最高,占器官生物量的63.0%以上。不同年龄毛竹各器官碳平均含量为0.466—0.483 g C/g;灌木层碳含量为0.474—0.489 g C/g;草本层为0.472—0.490 g C/g;死地被物层为0.213—0.276 g C/g;土壤层有机碳含量为14.790—34.503 g C/g。各年龄毛竹林生态系统总碳储量分别为131.273、139.089 t/hm~2和167.817 t/hm~2,其中植被层碳储量为13.627—28.419 t/hm~2,占系统总碳储量的9.935%—16.935%;死地被物为0.307—0.420 t/hm~2,占0.234%—0.265%;土壤层为117.339—138.978 t/hm~2,占82.815%—89.799%。毛竹林生态系统碳储量分布格局为:土壤层植被层死地被物层。研究结果可为深入研究毛竹林的碳平衡提供基础数据。  相似文献   
4.
Aims The shrublands of northern China have poor soil and nitrogen (N) deposition has greatly increased the local soil available N for decades. Shrub growth is one of important components of C sequestration in shrublands and litterfall acts as a vital link between plants and soil. Both are key factors in nutrient and energy cycling of terrestrial ecosystems, which greatly affected by nitrogen (N) addition (adding N fertilizer to the surface soil directly). However, the effects and significance of N addition on C sequestration and litterfall in shrublands remain unclear. Thus, a study was designed to investigate how N deposition and related treatments affected shrublands growth related to C sequestration and litterfall production of Vitex negundo var. heterophylla and Spiraea salicifolia in Mt. Dongling region of China.
Methods A N enrichment experiment has been conducted for V. negundo var. heterophylla and S. salicifolia shrublands in Mt. Dongling, Beijing, including four N addition treatment levels (control (N0, 0 kg N·hm-2·a-1), low N (N1, 20 kg N·hm-2·a-1), medium N (N2, 50 kg N·hm-2·a-1) and high N (N3, 100 kg N·hm-2·a-1)). Basal diameter and plant height of shrub were measured from 2012-2013 within all treatments, and allometric models for different species of shrub’s live branch, leaf and root biomass were developed based on independent variables of basal diameter and plant height, which will be used to calculate biomass increment of shrub layer. Litterfall (litterfall sometimes is named litter, referring to the collective name for all organic matter produced by the aboveground part of plants and returned to the surface, and mainly includes leaves, bark, dead twigs, flowers and fruits.) also was investigated from 2012-2013 within all treatments.
Important findings The results showed 1) mean basal diameter of shrubs in the V. negundo var. heterophylla and S. salicifolia shrublands were increased by 1.69%, 2.78%, 2.51%, 1.80% and 1.38%, 1.37%, 1.59%, 2.05% every year; 2) The height growth rate (the shrub height relative growth rate is defined with the percentage increase of plant height) of shrubs in the V. negundo var. heterophylla and S. salicifolia shrublands were 8.36%, 8.48%, 9.49%, 9.83% and 2.12%, 2.86%, 2.36%, 2.52% every year, respectively. Thee results indicated that N deposition stimulated growth of shrub layer both in V. negundo var. heterophylla and S. salicifolia shrublands, but did not reach statistical significance among all nitrogen treatments. The above-ground biomass increment of shrub layer in the V. negundo var. heterophylla and S. salicifolia shrublands were 0.19, 0.23, 0.14, 0.15 and 0.027, 0.025, 0.032, 0.041 t C·hm-2·a-1 respectively, which demonstrated that short-term N addition had no significant effects on the accumulation of C storage of the two shrublands. The litter production of the V. negundo var. heterophylla and S. salicifolia communities in 2013 were 135.7 and 129.6 g·m-2 under natural conditions, respectively. Nitrogen addition promoted annual production of total litterfall and different components of litterfall to a certain extent, but did not reach statistical significance among all nitrogen treatments. Above results indicated that short-term fertilization, together with extremely low soil moisture content and other related factors, lead to inefficient use of soil available nitrogen and slow response of shrublands to N addition treatments.  相似文献   
5.
红壤退化地森林恢复后土壤有机碳对土壤水库库容的影响   总被引:1,自引:0,他引:1  
亚热带红壤侵蚀退化地实施生态恢复后生物生产力恢复迅速,但土壤尤其是土壤水库的功能并未获得同步恢复,导致土壤水库对于降水和地表径流的调节能力低下,区域性洪涝灾害和季节性干旱依然突出。采用野外调查和室内分析相结合的方式,研究了南方红壤侵蚀退化地典型植被恢复类型(马尾松与阔叶树复层林、木荷与马尾松混交林、阔叶混交林)0—60cm土层土壤水库各种库容差异,以及土壤总有机碳和活性有机碳密度分布特征,采用典型相关分析方法对土壤水库库容与土壤有机碳密度两组指标进行相关分析。结果表明:随着土层深度的增加,各森林恢复类型死库容呈上升趋势,兴利库容和最大有效库容呈下降趋势,防洪库容变化趋势不明显,木荷与马尾松混交林兴利库容略高。不同森林恢复类型同一土层土壤总有机碳密度均表现为马尾松与阔叶树复层林木荷与马尾松混交林阔叶混交林,而活性有机碳密度则以阔叶混交林最大。典型相关分析表明,土壤有机碳水平对土壤水库库容的增加具有显著的因果影响关系(P=0.01),其中对有机碳水平起到主导性贡献作用的是水溶性有机碳。因此,对于退化红壤地森林恢复初期,可通过适当密植和立体种植,提高林地生物量和土壤碳密度,并在马尾松等先锋树种针叶林分中补植阔叶乔灌木,以增加土壤活性有机碳含量,增大土壤水库容量,从而有利于土壤水库结构和功能以及退化生态系统的快速恢复。  相似文献   
6.
7.
In the global transition to a sustainable low‐carbon economy, CO2 capture and storage technology still plays a critical role for deep emission reduction, particularly for the stationary sources in power generation and industry. However, for small and mobile emission sources in transportation, CO2 capture is not suitable and it is more practical to use relatively clean energy, such as natural gas. In these two low‐carbon energy technologies, designing highly selective sorbents is one of the key and most challenging steps. Toward this end, metal‐organic frameworks (MOFs) have received continuously intensive attention in the past decades for their highly porous and diversified structures. In this review, the recent progress in developing MOFs for selective CO2 capture from post‐combustion flue gas and CH4 storage for vehicle applications are summarized. For CO2 capture, several promising strategies being used to improve CO2 adsorption uptake at low pressures are highlighted and compared. In addition, the conventional and novel regeneration techniques for MOFs are also discussed. In the case of CH4 storage, the flexible and rigid MOFs, whose CH4 storage capacity is close to the target set by U.S. Department of Energy are particularly emphasized. Finally, the challenge of using MOFs for CH4 storage is discussed.  相似文献   
8.
Aquatic ecosystems depend on terrestrial organic matter (tOM) to regulate many functions, such as food web production and water quality, but an increasing frequency and intensity of drought across northern ecosystems is threatening to disrupt this important connection. Dry conditions reduce tOM export and can also oxidize wetland soils and release stored contaminants into stream flow after rainfall. Here, we test whether these disruptions to terrestrial–aquatic linkages occur during mild summer drought and whether this affects biota across 43 littoral zone sites in 11 lakes. We use copper (Cu) and nickel (Ni) as representative contaminants, and measure abundances of Hyalella azteca, a widespread indicator of ecosystem condition and food web production. We found that tOM concentrations were reduced but correlations with organic soils (wetlands and riparian forests) persisted during mild drought and were sufficient to suppress labile Cu concentrations. Wetlands, however, also became a source of labile Ni to littoral zones, which was linked to reduced abundances of the amphipod H. azteca, on average by up to 70 times across the range of observed Ni concentrations. This reveals a duality in the functional linkage of organic soils to aquatic ecosystems whereby they can help buffer the effects of hydrologic disconnection between catchments and lakes but at the cost of biogeochemical changes that release stored contaminants. As evidence of the toxicity of trace contaminant concentrations and their global dispersion grows, sustaining links among forests, organic soils and aquatic ecosystems in a changing climate will become increasingly important.  相似文献   
9.
Improving the accuracy of estimates of forest carbon exchange is a central priority for understanding ecosystem response to increased atmospheric CO2 levels and improving carbon cycle modelling. However, the spatially continuous parameterization of photosynthetic capacity (Vcmax) at global scales and appropriate temporal intervals within terrestrial biosphere models (TBMs) remains unresolved. This research investigates the use of biochemical parameters for modelling leaf photosynthetic capacity within a deciduous forest. Particular attention is given to the impacts of seasonality on both leaf biophysical variables and physiological processes, and their interdependent relationships. Four deciduous tree species were sampled across three growing seasons (2013–2015), approximately every 10 days for leaf chlorophyll content (ChlLeaf) and canopy structure. Leaf nitrogen (NArea) was also measured during 2014. Leaf photosynthesis was measured during 2014–2015 using a Li‐6400 gas‐exchange system, with A‐Ci curves to model Vcmax. Results showed that seasonality and variations between species resulted in weak relationships between Vcmax normalized to 25°C () and NArea (R2 = 0.62, < 0.001), whereas ChlLeaf demonstrated a much stronger correlation with (R2 = 0.78, < 0.001). The relationship between ChlLeaf and NArea was also weak (R2 = 0.47, < 0.001), possibly due to the dynamic partitioning of nitrogen, between and within photosynthetic and nonphotosynthetic fractions. The spatial and temporal variability of was mapped using Landsat TM/ETM satellite data across the forest site, using physical models to derive ChlLeaf. TBMs largely treat photosynthetic parameters as either fixed constants or varying according to leaf nitrogen content. This research challenges assumptions that simple NArea– relationships can reliably be used to constrain photosynthetic capacity in TBMs, even within the same plant functional type. It is suggested that ChlLeaf provides a more accurate, direct proxy for and is also more easily retrievable from satellite data. These results have important implications for carbon modelling within deciduous ecosystems.  相似文献   
10.
The incomplete combustion of vegetation and dead organic matter by landscape fires creates recalcitrant pyrogenic carbon (PyC), which could be consequential for the global carbon budget if changes in fire regime, climate, and atmospheric CO2 were to substantially affect gains and losses of PyC on land and in oceans. Here, we included global PyC cycling in a coupled climate–carbon model to assess the role of PyC in historical and future simulations, accounting for uncertainties through five sets of parameter estimates. We obtained year‐2000 global stocks of (Central estimate, likely uncertainty range in parentheses) 86 (11–154), 47 (2–64), and 1129 (90–5892) Pg C for terrestrial residual PyC (RPyC), marine dissolved PyC, and marine particulate PyC, respectively. PyC cycling decreased atmospheric CO2 only slightly between 1751 and 2000 (by 0.8 Pg C for the Central estimate) as PyC‐related fluxes changed little over the period. For 2000 to 2300, we combined Representative Concentration Pathways (RCPs) 4.5 and 8.5 with stable or continuously increasing future fire frequencies. For the increasing future fire regime, the production of new RPyC generally outpaced the warming‐induced accelerated loss of existing RPyC, so that PyC cycling decreased atmospheric CO2 between 2000 and 2300 for most estimates (by 4–8 Pg C for Central). For the stable fire regime, however, PyC cycling usually increased atmospheric CO2 (by 1–9 Pg C for Central), and only the most extreme choice of parameters maximizing PyC production and minimizing PyC decomposition led to atmospheric CO2 decreases under RCPs 4.5 and 8.5 (by 5–8 Pg C). Our results suggest that PyC cycling will likely reduce the future increase in atmospheric CO2 if landscape fires become much more frequent; however, in the absence of a substantial increase in fire frequency, PyC cycling might contribute to, rather than mitigate, the future increase in atmospheric CO2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号