首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63429篇
  免费   5510篇
  国内免费   7543篇
  2023年   1334篇
  2022年   1484篇
  2021年   1999篇
  2020年   2181篇
  2019年   3005篇
  2018年   2306篇
  2017年   2240篇
  2016年   2217篇
  2015年   2260篇
  2014年   3261篇
  2013年   4534篇
  2012年   2607篇
  2011年   3047篇
  2010年   2395篇
  2009年   3166篇
  2008年   3220篇
  2007年   3394篇
  2006年   3031篇
  2005年   2789篇
  2004年   2434篇
  2003年   2242篇
  2002年   2025篇
  2001年   1544篇
  2000年   1374篇
  1999年   1296篇
  1998年   1123篇
  1997年   1015篇
  1996年   891篇
  1995年   954篇
  1994年   913篇
  1993年   765篇
  1992年   717篇
  1991年   718篇
  1990年   562篇
  1989年   532篇
  1988年   524篇
  1987年   435篇
  1986年   441篇
  1985年   636篇
  1984年   764篇
  1983年   447篇
  1982年   606篇
  1981年   549篇
  1980年   505篇
  1979年   391篇
  1978年   293篇
  1977年   274篇
  1976年   245篇
  1975年   182篇
  1973年   194篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The antimicrobial activity of plant extract of Peganum harmala, a medicinal plant has been studied already. However, knowledge about bacterial diversity associated with different parts of host plant antagonistic to different human pathogenic bacteria is limited. In this study, bacteria were isolated from root, leaf and fruit of plant. Among 188 bacterial isolates isolated from different parts of the plant only 24 were found to be active against different pathogenic bacteria i.e. Escherichia coli, Methicillin-resistant Staphylococcus aureus (MRSA), Enterococcus faecium, Enterococcus faecalis and Pseudomonas aeruginosa. These active bacterial isolates were identified on the basis of 16S rRNA gene analysis. Total population of bacteria isolated from plant was high in root, following leaf and fruit. Antagonistic bacteria were also more abundant in root as compared to leaf and fruit. Two isolates (EA5 and EA18) exhibited antagonistic activity against most of the targeted pathogenic bacteria mentioned above. Some isolates showed strong inhibition for one targeted pathogenic bacterium while weak or no inhibition for others. Most of the antagonistic isolates were active against MRSA, following E. faecium, P. aeruginosa, E. coli and E. faecalis. Taken together, our results show that medicinal plants are good source of antagonistic bacteria having inhibitory effect against clinical bacterial pathogens.  相似文献   
2.
3.
Herbivory is a fundamental process that controls primary producer abundance and regulates energy and nutrient flows to higher trophic levels. Despite the recent proliferation of small‐scale studies on herbivore effects on aquatic plants, there remains limited understanding of the factors that control consumer regulation of vascular plants in aquatic ecosystems. Our current knowledge of the regulation of primary producers has hindered efforts to understand the structure and functioning of aquatic ecosystems, and to manage such ecosystems effectively. We conducted a global meta‐analysis of the outcomes of plant–herbivore interactions using a data set comprised of 326 values from 163 studies, in order to test two mechanistic hypotheses: first, that greater negative changes in plant abundance would be associated with higher herbivore biomass densities; second, that the magnitude of changes in plant abundance would vary with herbivore taxonomic identity. We found evidence that plant abundance declined with increased herbivore density, with plants eliminated at high densities. Significant between‐taxa differences in impact were detected, with insects associated with smaller reductions in plant abundance than all other taxa. Similarly, birds caused smaller reductions in plant abundance than echinoderms, fish, or molluscs. Furthermore, larger reductions in plant abundance were detected for fish relative to crustaceans. We found a positive relationship between herbivore species richness and change in plant abundance, with the strongest reductions in plant abundance reported for low herbivore species richness, suggesting that greater herbivore diversity may protect against large reductions in plant abundance. Finally, we found that herbivore–plant nativeness was a key factor affecting the magnitude of herbivore impacts on plant abundance across a wide range of species assemblages. Assemblages comprised of invasive herbivores and native plant assemblages were associated with greater reductions in plant abundance compared with invasive herbivores and invasive plants, native herbivores and invasive plants, native herbivores and mixed‐nativeness plants, and native herbivores and native plants. By contrast, assemblages comprised of native herbivores and invasive plants were associated with lower reductions in plant abundance compared with both mixed‐nativeness herbivores and native plants, and native herbivores and native plants. However, the effects of herbivore–plant nativeness on changes in plant abundance were reduced at high herbivore densities. Our mean reductions in aquatic plant abundance are greater than those reported in the literature for terrestrial plants, but lower than aquatic algae. Our findings highlight the need for a substantial shift in how biologists incorporate plant–herbivore interactions into theories of aquatic ecosystem structure and functioning. Currently, the failure to incorporate top‐down effects continues to hinder our capacity to understand and manage the ecological dynamics of habitats that contain aquatic plants.  相似文献   
4.
  • Studies on plant electrophysiology are mostly focused on specific traits of single cells. Inspired by the complexity of the signalling network in plants, and by analogy with neurons in human brains, we sought evidence of high complexity in the electrical dynamics of plant signalling and a likely relationship with environmental cues.
  • An EEG‐like standard protocol was adopted for high‐resolution measurements of the electrical signal in Glycine max seedlings. The signals were continuously recorded in the same plants before and after osmotic stimuli with a ?2 MPa mannitol solution. Non‐linear time series analyses methods were used as follows: auto‐correlation and cross‐correlation function, power spectra density function, and complexity of the time series estimated as Approximate Entropy (ApEn).
  • Using Approximate Entropy analysis we found that the level of temporal complexity of the electrical signals was affected by the environmental conditions, decreasing when the plant was subjected to a low osmotic potential. Electrical spikes observed only after stimuli followed a power law distribution, which is indicative of scale invariance.
  • Our results suggest that changes in complexity of the electrical signals could be associated with water stress conditions in plants. We hypothesised that the power law distribution of the spikes could be explained by a self‐organised critical state (SOC) after osmotic stress.
  相似文献   
5.
目的:采用基因芯片技术,分别构建气虚血瘀证大鼠和红花注射液给药处理后气虚血瘀证大鼠的差异基因表达谱,比较并分析,筛选出红花能够治疗气虚血瘀证的关键基因群,并推测其起治疗作用的基因组调控机制。方法:15只SD大鼠随机分为模型组、给药组、空白对照组。模型组和给药组采用疲劳游泳和饥饿饲养处理。造模一周后,给药组尾静脉注射红花注射液(100mg/kg/d),模型组给予相同体积生理盐水;对照组不做任何处理。造模进行两周后处死大鼠,取血检验血流变指标并评价造模情况;另抽取足够的血分离mRNA并逆转录杂交基因芯片;扫描信号分析确定受红花注射液调控的基因;并通过基因数据库查询相关基因功能,结合相关文献分析初步探讨红花作用的机制。结果:两周后经过检验和观察发现模型组大鼠在不同切率下的全血粘度增加,并且其体征表现出虚弱和瘀血的状态、体重下降,确定造模成功;给药组大鼠则相对于模型组的各项检测指标和状态有所改善,确认药物有疗效。在差异基因的比较中,空白组相对于给药组上调基因252条,下调基因54条;给药组相对于模型组上调基因196条,下调基因32条;两次差异表达基因中有16条相同基因,这些差异基因涉及到炎症损伤、免疫调节反应等方面。结论:红花注射液对于气虚血瘀证有治疗作用,在基因层次上是通过抗炎症损伤机制实现的。  相似文献   
6.
目的:探讨踝肱指数(ABI)与糖尿病周围神经病变及中医证候积分的相关性。方法:选取我院内分泌科收治辩证以气阴两虚 为证型的糖尿病患者66 例,根据踝肱指数实验将患者分为ABI降低组(0.9>ABI>0.5)和ABI 正常组(1.4>ABI>0.9)。记录患者神 经病变症状尼龙丝检查以及中医症候评分,分析ABI与糖尿病周围神经病变及中医证候积分的相关性。结果:ABI降低组的糖尿 病周围神经病变的患病率高于ABI正常组(P<0.05)。ABI 降低组发麻、针刺感症状的发生率高于ABI 正常组,且有统计学差异 (P<0.05)。ABI降低组10 g尼龙丝检查异常者多于ABI正常组,差异显著(P<0.05)。ABI降低组的感觉振动阈值高于ABI正常组 (P<0.05)。ABI数值与中医证候积分呈负向直线相关(P<0.05)。结论:糖尿病患者ABI数值与糖尿病周围神经病变和中医证候积 分具有相关性。  相似文献   
7.
目的:探讨癌基因Src在体外培养骨肉瘤细胞侵袭伪足形成中的作用。方法:构建Src sh RNA慢病毒表达载体,在HEK293T细胞中包装慢病毒,感染HT-1080骨肉瘤细胞,经嘌呤霉素加压筛选,获得稳定沉默Src基因的骨肉瘤细胞系HT-1080-sh Src;实时定量PCR和Western Blot法检测基因沉默效率;采用原位明胶酶谱法检测侵袭伪足形成;采用侵袭小室实验检测下调Src基因表达对HT-1080细胞侵袭力的影响。结果:成功构建稳定沉默Src基因的骨肉瘤细胞系HT-1080-sh Src及对照细胞系HT-1080-shluc,经实时定量PCR和Western Blot检测,与对照细胞系相比,HT-1080-sh Src细胞中Src基因表达下调3倍以上;下调HT-1080细胞中Src基因表达能显著抑制HT-1080细胞侵袭伪足形成及其对细胞外基质的降解能力;下调Src基因表达能显著抑制骨肉瘤细胞侵袭力。结论:癌基因Src参与调节骨肉瘤细胞HT-1080侵袭伪足形成,促进肿瘤侵袭、转移。  相似文献   
8.
9.
We propose a variant of the discrete Lotka–Volterra model for predator–prey interactions. A detailed stability and numerical analysis of the model are presented to explore the long time behaviour as each of the control parameter is varied independently. We show how the condition for survival of the predator depends on the natural death rate of predator and the efficiency of predation. The model is found to support different dynamical regimes asymptotically including predator extinction, stable fixed point and limit cycle attractors for co-existence of predator and prey and more complex dynamics involving chaotic attractors. We are able to locate exactly the domain of chaos in the parameter plane using a dimensional analysis.  相似文献   
10.
SPHK1 (sphingosine kinase 1), a regulator of sphingolipid metabolites, plays a causal role in the development of hepatocellular carcinoma (HCC) through augmenting HCC invasion and metastasis. However, the mechanism by which SPHK1 signaling promotes invasion and metastasis in HCC remains to be clarified. Here, we reported that SPHK1 induced the epithelial-mesenchymal transition (EMT) by accelerating CDH1/E-cadherin lysosomal degradation and facilitating the invasion and metastasis of HepG2 cells. Initially, we found that SPHK1 promoted cell migration and invasion and induced the EMT process through decreasing the expression of CDH1, which is an epithelial marker. Furthermore, SPHK1 accelerated the lysosomal degradation of CDH1 to induce EMT, which depended on TRAF2 (TNF receptor associated factor 2)-mediated macroautophagy/autophagy activation. In addition, the inhibition of autophagy recovered CDH1 expression and reduced cell migration and invasion through delaying the degradation of CDH1 in SPHK1-overexpressing cells. Moreover, the overexpression of SPHK1 produced intracellular sphingosine-1-phosphate (S1P). In response to S1P stimulation, TRAF2 bound to BECN1/Beclin 1 and catalyzed the lysine 63-linked ubiquitination of BECN1 for triggering autophagy. The deletion of the RING domain of TRAF2 inhibited autophagy and the interaction of BECN1 and TRAF2. Our findings define a novel mechanism responsible for the regulation of the EMT via SPHK1-TRAF2-BECN1-CDH1 signal cascades in HCC cells. Our work indicates that the blockage of SPHK1 activity to attenuate autophagy may be a promising strategy for the prevention and treatment of HCC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号