首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2016年   1篇
  1999年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Knowledge of biofouling typical of marine structures is essential for engineers to define appropriate loading criteria in addition to informing other stakeholders about the ecological implications of creating novel artificial environments. There is a lack of information regarding biofouling community composition (including weight and density characteristics) on floating structures associated with future marine renewable energy generation technologies. A network of navigation buoys were identified across a range of geographical areas, environmental conditions (tidal flow speed, temperature and salinity), and deployment durations suitable for future developments. Despite the perceived importance of environmental and temporal factors, geographical location explained the greatest proportion of the observed variation in community composition, emphasising the importance of considering geography when assessing the impact of biofouling on device functioning and associated ecology. The principal taxa associated with variation in biofouling community composition were mussels (Mytilus edulis), which were also important when determining loading criteria.  相似文献   
2.
 A coral damage index (CDI) is provided, to screen sites to obtain a perspective on the extent and severity of physical damage to coral. Sites are listed as “hot spots” if in any transect the percent of broken coral colonies (BCC) is greater than or equal to 4% or if the percent cover of coral rubble (CR) is greater than or equal to 3%. To demonstrate its utility, the CDI is applied to a real-life management situation off Hurghada and Safaga, Egypt in the Red Sea. The extent of coral damage covered all four diving sites. Forty percent of all the transects were “hot spots” that required management action. Thirty-one percent of the 16 “hot spot” transects were identified by both broken coral and rubble criteria, 25% by only broken coral criterion and 44% by only coral rubble criterion of the CDI, suggesting that past breakage was responsible for most of the observed damage. Sixty-three percent of the “hot spot” transects were at 4 m depth versus 37% at 8 m depth, suggesting that most of the damage was caused by anchors dragging across the reef in shallow water. The severity of coral damage, reflected by CR, was the greatest at Small Giftun in transect 5 at 4 m depth (333% above the CDI). EI Fanous experienced the most severe degree of broken coral damage (325% above the CDI) at 8 m depth along transect 2. Estimates of the number of dives per year show diving carrying capacities for El Fanous, Gotta Abu Ramada, Ras Abu Soma and Small Giftun being exceeded by large amounts. The CDI can be used globally to; gauge the severity and extent of damage, focus managers on areas that need mooring buoys and associated dive site management programs, and provide a starting point from which to focus more detailed coral reef assessments and restoration programs. Accepted: 30 June 1999  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号