首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   14篇
  国内免费   6篇
  2023年   2篇
  2022年   1篇
  2020年   6篇
  2019年   7篇
  2018年   2篇
  2017年   8篇
  2016年   3篇
  2015年   5篇
  2014年   7篇
  2013年   6篇
  2012年   3篇
  2011年   3篇
  2010年   2篇
  2009年   2篇
  2008年   5篇
  2007年   4篇
  2006年   3篇
  2005年   4篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2000年   1篇
  1999年   5篇
  1996年   1篇
排序方式: 共有85条查询结果,搜索用时 531 毫秒
1.
2.
随着细胞与组织工程的迅猛发展,能够促进细胞黏附、生长和分化的生物材料基质支架的研究日益重要。具有生物相容性且含水量超过99%的自组装肽水凝胶因其很好地符合理想的生物材料基质支架标准而备受重视。这类自我互补的两亲寡肽含50%的带电残基,并且以交替的离子亲水性和不带电的氨基酸残基周期性重复为特征;在其寡肽的氨基末端可用直接固相合成法修饰几个短序列生物活性模体进行功能化,用以促进不同细胞的黏附生长和靶向定位。现对自组装肽水凝胶的结构特征、自组装机制、对细胞黏附生长的影响以及未来自组装肽生物材料设计的目标进行综述.  相似文献   
3.
4.
Infection associated with implanted biomaterials is common and costly and such infections are extremely resistant to antibiotics and host defenses. Consequently, there is a need to develop surfaces which resist bacterial adhesion and colonization. The broad spectrum synthetic cationic peptide melimine has been covalently linked to a surface via two azide linkers, 4-azidobenzoic acid (ABA) or 4-fluoro-3-nitrophenyl azide (FNA), and the resulting surfaces characterized by X-ray photoelectron spectroscopy and contact angle measurements. The quantity of bound peptide was estimated by a modified Bradford assay. The antimicrobial efficacy of the two melimine-modified surfaces against Pseudomonas aeruginosa and Staphylococcus aureus was compared by scanning electron microscopy (SEM) and fluorescence microscopy. Attachment of melimine via ABA gave an approximately 4-fold greater quantity of melimine bound to the surface than attachment via FNA. Surfaces melimine-modified by either attachment strategy showed significantly reduced bacterial adhesion for both strains of bacteria. P. aeruginosa exposed to ABA–melimine and FNA–melimine surfaces showed marked changes in cell morphology when observed by SEM and a reduction of approximately 15-fold (p < 0.001) in the numbers of adherent bacteria compared to controls. For the ABA–melimine surface there was a 33% increase in cells showing damaged membranes (p = 0.0016) while for FNA–melimine there was no significant difference. For S. aureus there were reductions in bacterial adhesion of approximately 40-fold (p < 0.0001) and 5-fold (p = 0.008) for surfaces modified with melimine via ABA or FNA, respectively. There was an increase in cells showing damaged membranes on ABA–melimine surfaces of approximately 87% (p = 0.001) compared to controls, while for FNA–melimine there was no significant difference observed. The data presented in this study show that melimine has excellent potential for development as a broad spectrum antimicrobial coating for biomaterial surfaces. Further, it was observed that the efficacy of antimicrobial activity is related to the method of attachment.  相似文献   
5.
为了获得可实现工业化生产的重组人源性胶原蛋白,根据人I型胶原蛋白Gly-X-Y序列,优选亲水性的Gly-X-Y胶原肽段设计人源性胶原蛋白氨基酸序列及对应的核苷酸序列,利用酶切技术构建pPIC9K-COL表达载体,电转化毕赤酵母获得人源性胶原蛋白毕赤酵母工程菌,并对其进行发酵罐发酵、纯化及鉴定。结果显示,获得表达量达4.5 g/L,纯度大于95%的人源性胶原蛋白,经氨基酸N端测序、分子量测定、氨基酸分析及胶原酶降解试验,确定获得的蛋白与理论的人源性胶原蛋白一级结构一致;同时胶原经冷冻干燥后进行扫描电镜分析及细胞毒性试验,确定人源性胶原蛋白冻干品具有多孔纤维网状结构及优良的细胞相容性,预示其具备作为生物医学材料的潜质。  相似文献   
6.
The mechanical property of bone tissue scaffolds is one of the most important aspects in bone tissue engineering that has remained problematic. In our previous study, we fabricated a three‐dimensional scaffold from nano‐hydroxyapatite/gelatin (nHA/Gel) and investigated its efficiency in promoting bone regeneration both in vitro and in vivo. In the present study, the effect of adding silicon carbide (SiC) on the mechanical and biological behaviors of the nHA/Gel/SiC and bone regeneration in vivo were determined. nHA and SiC were synthesized and characterized by the X‐ray diffraction pattern and transmission electron microscope image. Layer solvent casting, freeze drying, and lamination techniques were applied to prepare these scaffolds. Then, the biocompatibility and cell adhesion behavior of the synthesized nHA/Gel/SiC scaffolds were investigated. For in vivo studies, rats were categorized into three groups: blank defect, blank scaffold, and rat bone marrow mesenchymal stem cells (rBM‐MSCs)/scaffold. After 1, 4, and 12 weeks post‐injury, the rats were sacrificed and the calvaria were harvested. Sections with a thickness of 5 µm thickness were prepared and stained with hematoxylin–eosin and Masson's Trichrome, and immunohistochemistry was performed. Our results showed that SiC effectively increased the mechanical properties of the nHA/Gel/SiC scaffold. No significant differences were observed in biocompatibility, cell adhesion, and cytotoxicity of the nHA/Gel/SiC in comparison with the nHA/Gel nanocomposite. Based on histological and immunohistochemical studies, both osteogenesis and collagenization were significantly higher in the rBM‐MSCs/scaffold group, quantitatively and qualitatively. The present study strongly suggests the potential of SiC as an alternative strategy to improve the mechanical and biological properties of bone tissue engineering scaffolds, and shows that the pre‐seeded nHA/Gel/SiC scaffold with rBM‐MSCs improves osteogenesis in the engineered bone implant.  相似文献   
7.
Local administration of FK506, an FDA approved immunosuppressant with neuroregenerative properties, is a promising technique to achieve improved peripheral nerve regeneration while preventing the side effects associated with the systemic administration of this drug. Although considerable research has been devoted to the development of clinically suitable systems for local delivery of FK506 to the site of nerve injury and repair, the optimal dose of FK506 for enhancement of axon regeneration in the peripheral nerve has not yet been established. To this end, we devised a three-dimensional (3D) organotypic assay capable of mimicking the peripheral nerve. This assay consisted of a neonatal rat dorsal root ganglion (DRG) extending its neurites into the native peripheral nerve scaffold provided by an acellular nerve allograft (ANA). A novel 3D compartmented cell culture system was adapted from the 3D organotypic assay to achieve local delivery of FK506 just to the growing neurites in vitro and establish the required local dose of FK506 for peripheral nerve regeneration. A bimodal dose response was observed by culturing the entire DRG–ANA construct with media containing different concentrations of FK506. Low drug concentration of 1 pg/ml and high drug concentration of 100 ng/ml lead to the longest neurite extension in vitro. Furthermore, regardless of the FK506 concentration, concentrating the drug to the growing neurites resulted in significant increase in both neurite extension and neurite density, an effect that was not observed with the FK506 delivery to both neurites and neural cell bodies within DRG. The findings in this study provide valuable insight into the optimal local dose of FK506 for peripheral nerve regeneration. Furthermore, for the first time, this study suggests the potential interaction of FK506 with axons at the level of the growth cone.  相似文献   
8.
9.
Combinatorial material synthesis is a powerful approach for creating composite material libraries for the high‐throughput screening of cell–material interactions. Although current combinatorial screening platforms have been tremendously successful in identifying target (termed “hit”) materials from composite material libraries, new material synthesis approaches are needed to further optimize the concentrations and blending ratios of the component materials. Here we employed a microfluidic platform to rapidly synthesize composite materials containing cross‐gradients of gelatin and chitosan for investigating cell–biomaterial interactions. The microfluidic synthesis of the cross‐gradient was optimized experimentally and theoretically to produce quantitatively controllable variations in the concentrations and blending ratios of the two components. The anisotropic chemical compositions of the gelatin/chitosan cross‐gradients were characterized by Fourier transform infrared spectrometry and X‐ray photoelectron spectrometry. The three‐dimensional (3D) porous gelatin/chitosan cross‐gradient materials were shown to regulate the cellular morphology and proliferation of smooth muscle cells (SMCs) in a gradient‐dependent manner. We envision that our microfluidic cross‐gradient platform may accelerate the material development processes involved in a wide range of biomedical applications. Biotechnol. Bioeng. 2011; 108:175–185. © 2010 Wiley Periodicals, Inc.  相似文献   
10.
Generation of adaptive immune response relies on efficient drainage or trafficking of antigen to lymph nodes for processing and presentation of these foreign molecules to T and B lymphocytes. Lymph nodes have thus become critical targets for new vaccines and immunotherapies. A recent strategy for targeting these tissues is direct lymph node injection of soluble vaccine components, and clinical trials involving this technique have been promising. Several biomaterial strategies have also been investigated to improve lymph node targeting, for example, tuning particle size for optimal drainage of biomaterial vaccine particles. In this paper we present a new method that combines direct lymph node injection with biodegradable polymer particles that can be laden with antigen, adjuvant, or other vaccine components. In this method polymeric microparticles or nanoparticles are synthesized by a modified double emulsion protocol incorporating lipid stabilizers. Particle properties (e.g. size, cargo loading) are confirmed by laser diffraction and fluorescent microscopy, respectively. Mouse lymph nodes are then identified by peripheral injection of a nontoxic tracer dye that allows visualization of the target injection site and subsequent deposition of polymer particles in lymph nodes. This technique allows direct control over the doses and combinations of biomaterials and vaccine components delivered to lymph nodes and could be harnessed in the development of new biomaterial-based vaccines.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号