首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130篇
  免费   9篇
  国内免费   6篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   4篇
  2019年   5篇
  2018年   6篇
  2017年   3篇
  2016年   3篇
  2015年   1篇
  2014年   7篇
  2013年   16篇
  2012年   4篇
  2011年   17篇
  2010年   8篇
  2009年   11篇
  2008年   6篇
  2007年   5篇
  2006年   3篇
  2005年   6篇
  2004年   7篇
  2003年   6篇
  2002年   5篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1997年   5篇
  1996年   1篇
  1994年   1篇
  1990年   2篇
  1989年   1篇
  1983年   2篇
排序方式: 共有145条查询结果,搜索用时 15 毫秒
1.
In this study, atmospheric and room temperature plasma and ultraviolet mutagenesis was studied for astaxanthin overproducing mutant. Phaffia rhodozyma mutant Y1 was obtained from the selection plate with 120 μmol/L diphenylamine as selection agent, and its carotenoid concentration and content were 54.38 mg/L and 5.38 mg/g, which were 19.02 % and 21.20 % higher than that of the original strain, respectively. Sugarcane bagasse hydrolysate was used for astaxanthin production by mutant Y1 at 22 °C and 220 rpm for 96 h, and the biomass and carotenoid concentration reached 12.65 g/L and 88.57 mg/L, respectively. Ultrasonication and cellulase were used to break cell wall and the parameters were optimized, achieving an astaxanthin extraction rate of 96.01 %. The present work provided a novel combined mutagenesis method for astaxanthin overproducing mutant and a green cell wall disruption process for astaxanthin extraction, which would play a solid foundation on the development of natural astaxanthin.  相似文献   
2.
Cost effective bioprocessing of nutraceuticals in present global scenario is a matter of concern. This study explored Paper mill sludge (PMS) and sugarcane bagasse (SCB) as inexpensive substrate for Planococcus sp. TRC1 mediated valuable β-carotene production and residual treated biomass as value added crystalline cellulose source simultaneously. Both biomass supported significant bacterial growth reaching highest yield 38.54 ± 1.4 mg/g on PMS (36 h) and 47.13 ± 1.9 mg/g (48 h) on SCB in solid state fermentation. Luedeking-Piret model revealed growth associated production with α and much lower β values of 5.18 and 0.24 for PMS and 4.5 and 0.165 for SCB. Cost analysis exhibited decrementation of pigment cost/mg by 84 % compared to synthetic media. Optimum production conditions were 30 °C temperature, pH 7, 10 % inoculum and initial moisture content 80 % (PMS) and 85 % (SCB). TLC (Rf = 0.9), HPLC (RT = 7.646) and lambda max (465 nm) confirmed pigment’s β-carotene nature with significant antioxidant and antimicrobial activity. It showed stability at varied temperature, pH and light conditions along with negligible phytotoxicity on Vigna radiata. Planococcus sp. TRC1 delignified PMS (41 %) and SCB (38 %) and FT-IR, FESEM and XRD suggested crystalline nature of residual cellulose rich fraction shedding light on a biorefinery approach for valorization of industrial solid wastes.  相似文献   
3.
A halophilic and alkali-tolerant Chromohalobacter sp. TPSV 101 with an ability to produce extracellular halophilic, alkali-tolerant and moderately thermostable xylanase was isolated from solar salterns. Identification of the bacterium was done based upon biochemical tests and 16S rRNA sequence. The culture conditions for higher xylanase production were optimized with respect to NaCl, pH, temperature, substrates and metal ions and additives. Maximum xylanase production was achieved in the medium with 20% NaCl, pH-9.0 at 40°C supplemented with 1% (w/v) sugarcane bagasse and 0.5% feather hydrolysate as carbon and nitrogen sources. Sugarcane bagasse (250 U/ml) and wheat bran (190 U/ml) were the best inducer of xylanase when used as carbon source as compared to xylan (61 U/ml). The xylanase that was partially purified by protein concentrator had a molecular mass of 15 kDa approximately. The xylanase from Chromohalobacter sp. TPSV 101 was active at pH 9.0 and required 20% NaCl for optimal xylanolytic activity and was active over a broad range of temperature 40–80°C with 65°C as optimum. The early stage hydrolysis products of sugarcane bagasse were xylose and xylobiose, after longer periods of incubation only xylose was detected.  相似文献   
4.
A complete cellulase from Penicillium pinophilum was evaluated for the hydrolysis of α-cellulose derived from steam exploded sugarcane bagasse and other cellulosic substrates. α-Cellulose at 1% substrate concentration was completely hydrolyzed by Penicillium cellulase within 3 h wherein at 10% the hydrolysis was 100% within 24 h with an enzyme loading of 10 FPU/g. The hydrolysate yielded glucose as major end product as analyzed by HPLC. Under similar conditions, hydrolysis of Sigmacell (microcrystalline cellulose), CP-123 (pulverized cellulose powder) and ball milled Solka Floc were 42%, 56% and 52%, respectively. Further the hydrolysis performance of Penicillium sp. cellulase is compared with Trichoderma reesei cellulase (AccelleraseTM 1000) from Genencore. The kinetics of hydrolysis with respect to enzyme and substrate concentration will be presented.  相似文献   
5.
Several compounds that are formed or released during hydrolysis of lignocellulosic biomass inhibit the fermentation of the hydrolysate. The use of a liquid extractive agent is suggested as a method for removal of these fermentation inhibitors. The method can be applied before or during the fermentation. For a series of alkanes and alcohols, partition coefficients were measured at low concentrations of the inhibiting compounds furfural, hydroxymethyl furfural, vanillin, syringaldehyde, coniferyl aldehyde, acetic acid, as well as for ethanol as the fermentation product. Carbon dioxide production was measured during fermentation in the presence of each organic solvent to indicate its biocompatibility. The feasibility of extractive fermentation of hydrolysate was investigated by ethanolic glucose fermentation in synthetic medium containing several concentrations of furfural and vanillin and in the presence of decanol, oleyl alcohol and oleic acid. Volumetric ethanol productivity with 6 g/L vanillin in the medium increased twofold with 30% volume oleyl alcohol. Decanol showed interesting extractive properties for most fermentation inhibiting compounds, but it is not suitable for in situ application due to its poor biocompatibility. Biotechnol. Bioeng. 2009;102: 1354–1360. © 2008 Wiley Periodicals, Inc.  相似文献   
6.
Sweet sorghum (Sorghum bicolor (L.) Moench) is widely recognized as a highly promising biomass energy crop with particular potential to complement sugarcane production in diversified cropping systems. Agronomic assessments have led to identification of four cultivars well suited for such sugarcane‐based production systems in southern Louisiana. Sweet sorghum biofuel production systems are currently being developed, and research producing large sample numbers requiring ethanol yield assessment is anticipated. Fiber analysis approaches developed for forage evaluation appear to be useful for screening such large numbers of samples for relative ethanol yield. Chemical composition, forage fiber characteristics, digestibility, and ethanol production of sweet sorghum bagasse from the four cultivars were assessed. Measures of detergent fiber, lignin, and digestibility were highly correlated with ethanol production (P < 0.01). The best linear regression models accounted for about 80% of the variation among cultivars in ethanol production. Bagasse from the cultivar Dale produced more ethanol per gram of material than any of the other cultivars. This superior ethanol production was apparently associated with less lignin in stems of Dale. Forage evaluation measures including detergent fiber analyses, in vitro digestibility, and an in vitro gas production technique successfully identified the cultivar superior in ethanol yield indicating their usefulness for screening sweet sorghum samples for potential ethanol production in research programs generating large sample numbers from evaluations of germ plasm or agronomic treatments. These screening procedures reduce time and expense of alternatives such as hexose sugar assessment for calculating theoretical ethanol yield.  相似文献   
7.
The dissociation of wheat glutenin into subunits was observed by treatment with a small amount of mercuric chloride under moderate conditions, suggesting that the cleavage of inter-polypeptide chain disulfide bonds in the glutenin might occur. The dissociation into the subunits was examined by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. The electrophoretic patterns of the glutenin treated with mercuric chloride were essentially similar to those of the glutenin treated with 2-mercaptoethanol. Silver nitrate also had the same effects as mercuric chloride, and p-chloromercuribenzoate and N-ethylmaleimide showed no effect on the dissociation of the glutenin. Complete dissociation was achieved when the glutenin solution containing 0.5% SDS and 0.01 m phosphate buffer (pH 7.0) was incubated with 10?3 m mercuric chloride (about four moles per mole of disulfide groups) at 30°C for 20 hr. Partial dissociation was also observed after 30 min incubation. Increasing temperature and SDS concentration promoted the rate of the dissociation of the glutenin by mercuric chloride.  相似文献   
8.
ABSTRACT

A laboratory-scale biofilter unit packed with a mixture of compost, sugarcane bagasse, and granulated activated carbon (GAC) in the ratio of 55:30:15 by weight was used for a biofiltration study of air stream containing benzene, toluene, ethylbenzene, and o-xylene (BTEX). The effect of superficial velocity on mass transfer coefficient for the packing was studied by maintaining gas flow rates of 3, 4, 5, 6, and 8 L min?1 for inlet concentrations of 0.1, 0.4, and 0.8 g m?3 for each of benzene, toluene, ethylbenzene, and o-xylene. The maximum elimination capacity was found to be 20.92, 22.72, 20.73, and 18.94 g m?3 h?1 for BTEX, respectively, for stated flow rates. Removal efficiency of BTEX decreased from 99% to 71% for increasing inlet concentration from 0.1 to 0.8 g m?3. Gas film mass transfer coefficient predicted by modified Onda's equation was within ±10% of the experimental values.  相似文献   
9.
To promote the decomposition of sugarcane bagasse (SCB) for conversion into value-added products and to reduce waste, the capability of fungal mixes (FMs) to degrade SCB was examined. A total of 169 isolates from SCB and non-SCB were categorized as thermotolerant and thermoresistant. Thirty-six fungal candidates were screened for the presence of polyphenol oxidase, endoglucanase (EDN) and xylanase (XLN) activities, and EDN and XLN activities were quantitated. Five identified isolates (Aspergillus flavus AG10; Aspergillus niger AG68 & NB23; and Penicillium citrinum AG93 & AG140) were selected as the best enzyme producers, and 15 moderately to highly xylolytic, cellulolytic and ligninolytic isolates were added to construct FMs. Using a Taguchi design, the top ten reducing sugar-producing FMs (no. 12 showed the maximum amount of reducing sugar, at 2.11 mg g−1, followed by no. 7, 15, 2, 16, 11, 13, 6, 4, & 8) were selected as potential agents for decomposition durations of 1, 2 and 3 months. The maximum decrease in SCB materials compared with the control was generated by FM 6 (9.08% cellulose reduction); FM 13 (21.03% hemicellulose reduction); and FM 16 (9.21% lignin reduction). These results indicate the potential use of SCB as a substrate for synergistic FMs. These FMs could be applied to the large-scale composting of SCB and other related agricultural residues, thus improving the biological pretreatment of lignocellulose.  相似文献   
10.
采用不同的预处理方法对蔗渣进行预处理,并测定了其各个组分的含量。利用霉菌对蔗渣进行微生物降解,并讨论了不同发酵方式对产物中蛋白含量的影响。结果表明,木霉与热带假丝酵母共发酵时蛋白含量最高,为17.74%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号