首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   2篇
  2021年   1篇
  2019年   1篇
  2015年   1篇
  2014年   5篇
  2013年   4篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2002年   1篇
  1985年   1篇
  1979年   1篇
  1975年   1篇
排序方式: 共有32条查询结果,搜索用时 15 毫秒
1.
Twelve anthocyanins have been isolated from flax: the 3-glucosylrutinosides of pelargonidin, cyanidin and delphinidin; the 3-triglucosides of delphinid  相似文献   
2.
从一品红红色苞片中提取花色素,并用自由基测定试剂盒测试了一品红花色素的体外抗氧化性能,并用碘量法测定了其抑制猪油氧化的效果,用TBARS法测定其对血浆脂蛋白氧化的抑制能力。结果表明:一品红花色素具有较强的清除超氧阴离子(O2.-)和羟自由基(.OH)的能力,清除效果优于同浓度的VC;其对猪油氧化的抑制效果和同浓度的VC相近,而对人血浆脂质过氧化的抑制效果显著高于VC。  相似文献   
3.
Sahay A  Shakya M 《Bioinformation》2010,5(6):259-263
Spinach is an important dietary vegetable associated with beneficial health effects. Flavonoids have various biological activities such as antioxidant, antibacterial, and anticancer effect Flavonoid including anthocyanin provides brilliant and colored pigments in different plant tissues. Anthocyanidin synthase and dihydroflavonol 4-reductase are responsible for anthocyanin biosynthesis. They contributed in plant protection against UV-B radiation, microbial and herbivore pathogens. A 3D structures of anthocyanidin synthase and dihydroflavonol 4-reductase from spinach are constructed in this study through homology modeling. The homology modeling is done by using the MODELLER 9v7 software. The energy of models was minimized by applying molecular mechanics method. The root mean square deviation (RMSD) for C atoms between the template and the homology-modeled structures was estimated by CE program. The final models were assessed by PROCHECK and WHATCHECK which showed that the final refined models are reliable.  相似文献   
4.
Isoflavonoids are commonly found in leguminous plants, where they play important roles in plant defense and have significant health benefits for animals and humans. Vestitone reductase catalyzes a stereospecific NADPH-dependent reduction of (3R)-vestitone in the biosynthesis of the antimicrobial isoflavonoid phytoalexin medicarpin. The crystal structure of alfalfa (Medicago sativa L.) vestitone reductase has been determined at 1.4 A resolution. The structure contains a classic Rossmann fold domain in the N terminus and a small C-terminal domain. Sequence and structural analysis showed that vestitone reductase is a member of the short-chain dehydrogenase/reductase (SDR) superfamily despite the low levels of sequence identity, and the prominent structural differences from other SDR enzymes with known structures. The putative binding sites for the co-factor NADPH and the substrate (3R)-vestitone were defined and located in a large cleft formed between the N and C-terminal domains of enzyme. Potential key residues for enzyme activity were also identified, including the catalytic triad Ser129-Tyr164-Lys168. A molecular docking study showed that (3R)-vestitone, but not the (3S) isomer, forms favored interactions with the co-factor and catalytic triad, thus providing an explanation for the enzyme's strict substrate stereo-specificity.  相似文献   
5.
Anthocyanins are colorful plant pigments with promising applications as pharmaceuticals and colorants. In order to engineer efficient pigment biosynthesis in Escherichia coli, the activities of various dihydroflavonol 4-reductases (DFRs) were characterized for the three primary dihydroflavonol substrates. The biochemical assays demonstrated variable DFR activities for dihydroflavonol with one B-ring hydroxyl group, the precursor of pelargonidin derivatives. In contrast, dihydroflavonols with two and three B-ring hydroxylation were metabolized with comparable efficiency. Furthermore, the catalysis of DFR for the secondary substrates, flavanones, also depended on the number of B-ring hydroxyl groups. Engineering the expression of the DFR clones together with plant-specific 4-coumaroyl:CoA ligase, chalcone synthase, chalcone isomerase, and flavanone 3-hydroxylase in E. coli resulted in the synthesis of pelargonidin at various levels, from p-coumaric acids. The identification of a robust DFR from this study can also be used for engineering recombinant synthesis of other bioactive flavonoids, such as flavan-3-ols.  相似文献   
6.
The hydrolysis of proanthocyanidins to anthocyanidins in n-BuOH-HCl (95:5) has been shown to be an autoxidation, the yield of anthocyanidin being critically dependent on trace metal-ion impurities. Reproducible yields of anthocyanidin may be achieved if iron (III) salts are added to the reaction medium, and a standard method of analysis of proanthocyanidins based on use of an n-BuOH-HCl-FeIII mixture is given. The ratio of absorbance maxima of the cyanidin (550 nm) produced to that near 280 nm for the original procyanidin polymer solution was ~ 3.5.  相似文献   
7.
Molecular evolution of flavonoid dioxygenases in the family Apiaceae   总被引:4,自引:0,他引:4  
Plant species of the family Apiaceae are known to accumulate flavonoids mainly in the form of flavones and flavonols. Three 2-oxoglutarate-dependent dioxygenases, flavone synthase or flavanone 3 beta-hydroxylase and flavonol synthase are involved in the biosynthesis of these secondary metabolites. The corresponding genes were cloned recently from parsley (Petroselinum crispum) leaves. Flavone synthase I appears to be confined to the Apiaceae, and the unique occurrence as well as its high sequence similarity to flavanone 3beta-hydroxylase laid the basis for evolutionary studies. In order to examine the relationship of these two enzymes throughout the Apiaceae, RT-PCR based cloning and functional identification of flavone synthases I or flavanone 3beta-hydroxylases were accomplished from Ammi majus, Anethum graveolens, Apium graveolens, Pimpinella anisum, Conium maculatum and Daucus carota, yielding three additional synthase and three additional hydroxylase cDNAs. Molecular and phylogenetic analyses of these sequences were compatible with the phylogeny based on morphological characteristics and suggested that flavone synthase I most likely resulted from gene duplication of flavanone 3beta-hydroxylase, and functional diversification at some point during the development of the apiaceae subfamilies. Furthermore, the genomic sequences from Petroselinum crispum and Daucus carota revealed two introns in each of the synthases and a lack of introns in the hydroxylases. These results might be explained by intron losses from the hydroxylases occurring at a later stage of evolution.  相似文献   
8.
采用PCR和RT-PCR方法从野生马铃薯(Solanum cardiphyllum)分离得到了一个花色素合成酶(anthocyanidin synthase)同源基因ScANS的cDNA(GenBank登录号HQ701726)和DNA序列(GenBank登录号HQ701727)。序列分析表明,ScA册基因全长为1583bp,由一个内含子和两个外显子组成,开放阅读框长度为1365bp,编码一个由454个氨基酸残基组成的蛋白。该蛋白分子量为51.10kDa,理论等电点为5.24。ScANS含有典型的20G—FeII-Oxy保守功能域,属于2-OOD酶家族,其氨基酸序列与茄子的同源蛋白序列一致性最高,达82.86%。组织表达分析表明,SScANS在马铃薯植株的茎、叶和顶芽中有较高水平的转录表达,在根中有微量表达,在匍匐茎和块茎中检测不到。  相似文献   
9.
Rani A  Singh K  Ahuja PS  Kumar S 《Gene》2012,495(2):205-210
Catechins are bioprospecting molecules present in tea and any effort towards metabolic engineering of this important moiety would require knowledge on gene regulation. These are synthesized through the activities of phenylpropanoid and flavonoid pathways. Expression regulation of various genes of these pathways namely phenylalanine ammonia-lyase (CsPAL), cinnamate 4-hydroxylase (CsC4H), p-coumarate:CoA ligase (Cs4CL), flavanone 3-hydroxylase (CsF3H), dihydroflavonol 4-reductase (CsDFR) and anthocyanidin reductase (CsANR) was accomplished previously. In depth analyses of the remaining genes namely, chalcone synthase (CsCHS), chalcone isomerase (CsCHI), flavonoid 3'5'-hydroxylase (CsF3'5'H) and anthocyanidin synthase (CsANS) were lacking. The objective of the work was to clone and analyze these genes so as to generate a comprehensive knowledge on the critical genes of catechins biosynthesis pathway. Gene expression analysis was carried out in response to leaf age and external cues (drought stress, abscisic acid, gibberellic acid treatments and wounding). A holistic analysis suggested that CsCHI, CsF3H, CsDFR, CsANS and CsANR were amongst the critical regulatory genes in regulating catechins content.  相似文献   
10.
The pigment retention rate of hordeumin was higher than that of two standard anthocyanidins, cyanidin and delphinidin, when hordeumin and anthocyanidins were dissolved in Walpole buffer (pH 1.0) and stored. Moreover, when pigment solutions were stored at 15°C under light irradiation, the pigment retention rate of the hordeumin solution became higher than those of standard anthocyanidins (2 to 10 times) as the storage period increased. Comparing various pH buffers (MacIlvaine buffer, pH 2.2 to 7.0), the pigment retention rate of hordeumin at pH 5.0 was highest. Furthermore, the half-life of hordeumin at pH 5.0 was increased from 9 days to 17.5 days when nitrogen gas was bubbled into the hordeumin solution. We considered that the storage stability of hordeumin is higher than standard anthocyanidins because hordeumin is a complex with anthocyanin, tannin, and protein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号