首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1167篇
  免费   248篇
  国内免费   83篇
  2024年   5篇
  2023年   87篇
  2022年   84篇
  2021年   110篇
  2020年   131篇
  2019年   134篇
  2018年   85篇
  2017年   92篇
  2016年   99篇
  2015年   88篇
  2014年   106篇
  2013年   88篇
  2012年   68篇
  2011年   59篇
  2010年   35篇
  2009年   40篇
  2008年   34篇
  2007年   30篇
  2006年   29篇
  2005年   29篇
  2004年   14篇
  2003年   10篇
  2002年   14篇
  2001年   2篇
  2000年   1篇
  1999年   4篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1992年   1篇
  1989年   2篇
  1987年   3篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1980年   1篇
  1950年   3篇
排序方式: 共有1498条查询结果,搜索用时 17 毫秒
1.
2.
A major goal of modern evolutionary biology is to understand the causes and consequences of phenotypic plasticity, the ability of a single genotype to produce multiple phenotypes in response to variable environments. While ecological and quantitative genetic studies have evaluated models of the evolution of adaptive plasticity, some long-standing questions about plasticity require more mechanistic approaches. Here, we address two of those questions: does plasticity facilitate adaptive evolution? And do physiological costs place limits on plasticity? We examine these questions by comparing genetically and plastically regulated behavioural variation in sailfin mollies (Poecilia latipinna), which exhibit striking variation in plasticity for male mating behaviour. In this species, some genotypes respond plastically to a change in the social environment by switching between primarily courting and primarily sneaking behaviour. In contrast, other genotypes have fixed mating strategies (either courting or sneaking) and do not display plasticity. We found that genetic and plastic variation in behaviour were accompanied by partially, but not completely overlapping changes in brain gene expression, in partial support of models that predict that plasticity can facilitate adaptive evolution. We also found that behavioural plasticity was accompanied by broader and more robust changes in brain gene expression, suggesting a substantial physiological cost to plasticity. We also observed that sneaking behaviour, but not courting, was associated with upregulation of genes involved in learning and memory, suggesting that sneaking is more cognitively demanding than courtship.  相似文献   
3.
4.
5.
Neodryinus typhlocybae (Hymenoptera: Dryinidae) is a natural enemy of the planthopper Metcalfa pruinosa, which was introduced from North America into Europe and has become established in various regions as a pest species. Vibrational signals play a crucial role in the communication of M. pruinosa, which appears to be exploited by N. typhlocybae. Scanning and transmission electron microscopy have shown that the antennae of N. typhlocybae females have peculiar and complex sensory structures: deep longitudinal grooves that house long sensilla trichodea, termed here “Antennal Dorsal Organs.” Such structures were not present on male antennae. These sensilla extend for the length of the grooves, without contact with the groove cuticle. Their hair shaft is empty and aporous, and inserted into a specialized socket, underneath which there is a cuticular ampulla‐like chamber. Each sensillum is associated with two sensory neurons: one terminates at the proximal end of the dendritic sheath; the other continues into the sensillum sinus and is enclosed in the dendritic sheath. This second sensory neuron then enters the ampulla‐like chamber through the circular opening, and then terminates with a conspicuous tubular body at the shaft base. The possible involvement of this peculiar structure in the context of host recognition mechanism is discussed. J. Morphol. 277:128–137, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   
6.
Kun Guo  Le Kang  Feng Cui 《Insect Science》2017,24(3):431-442
Host alternation, an obligatory seasonal shifting between host plants of distant genetic relationship, has had significant consequences for the diversification and success of the superfamily of aphids. However, the underlying molecular mechanism remains unclear. In this study, the molecular mechanism of host alternation was explored through a large‐scale gene expression analysis of the mealy aphid Hyalopterus persikonus on winter and summer host plants. More than four times as many unigenes of the mealy aphid were significantly upregulated on summer host Phragmites australis than on winter host Rosaceae plants. In order to identify gene candidates related to host alternation, the differentially expressed unigenes of H. persikonus were compared to salivary gland expressed genes and secretome of Acyrthosiphon pisum. Genes involved in ribosome and oxidative phosphorylation and with molecular functions of heme–copper terminal oxidase activity, hydrolase activity and ribosome binding were potentially upregulated in salivary glands of H. persikonus on the summer host. Putative secretory proteins, such as detoxification enzymes (carboxylesterases and cytochrome P450s), antioxidant enzymes (peroxidase and superoxide dismutase), glutathione peroxidase, glucose dehydrogenase, angiotensin‐converting enzyme, cadherin, and calreticulin, were highly expressed in H. persikonus on the summer host, while a SCP GAPR‐1‐like family protein and a salivary sheath protein were highly expressed in the aphids on winter hosts. These results shed light on phenotypic plasticity in host utilization and seasonal adaptation of aphids.  相似文献   
7.
8.
[目的] 瓜实蝇是世界性检疫害虫,被列入我国口岸常年监测计划中。本研究以检疫性有害生物瓜实蝇为研究对象,利用不同地理种群瓜实蝇的转录组发现特异性的微卫星(simple sequence repeats,SSR)序列,分析我国口岸监测的瓜实蝇样本的遗传多样性。[方法] 利用生物信息学方法,对4个不同地理来源的瓜实蝇转录组进行分析,发现了特异性的SSR序列,并设计特异性引物,选用我国11个省市的49个瓜实蝇监测样本进行测试及验证,使用NTsys和Popgene 32软件进行遗传多样性分析。[结果] 筛选出15对多态性较好的引物,UPGMA聚类分析显示,新疆、四川和广西种群归为一支,浙江、广东、江苏种群归为一支,上海、云南、海南、天津种群归为一支,北京种群单独聚为一支。[结论] 聚类分析结果显示,11个不同省市的瓜实蝇监测样本间基因分化系数为0.6712,表明不同口岸的瓜实蝇监测样本间的遗传分化较大,可能具有不同的来源地,可为进一步开发监测样本溯源技术提供理论依据。  相似文献   
9.
With the expansion of saline land worldwide, it is essential to establish a model halophyte to study the salt‐tolerance mechanism. The salt glands in the epidermis of Limonium bicolor (a recretohalophyte) play a pivotal role in salt tolerance by secreting excess salts from tissues. Despite the importance of salt secretion, nothing is known about the molecular mechanisms of salt gland development. In this study, we applied RNA sequencing to profile early leaf development using five distinct developmental stages, which were quantified by successive collections of the first true leaves of L. bicolor with precise spatial and temporal resolution. Specific gene expression patterns were identified for each developmental stage. In particular, we found that genes controlling salt gland differentiation in L. bicolor may evolve in a trichome formation, which was also confirmed by mutants with increased salt gland densities. Genes involved in the special ultrastructure of salt glands were also elucidated. Twenty‐six genes were proposed to participate in salt gland differentiation. Our dataset sheds light on the molecular processes underpinning salt gland development and thus represents a first step towards the bioengineering of active salt‐secretion capacity in crops.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号