首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15142篇
  免费   1689篇
  国内免费   835篇
  2024年   4篇
  2023年   280篇
  2022年   237篇
  2021年   387篇
  2020年   515篇
  2019年   581篇
  2018年   468篇
  2017年   568篇
  2016年   551篇
  2015年   596篇
  2014年   712篇
  2013年   925篇
  2012年   771篇
  2011年   728篇
  2010年   611篇
  2009年   740篇
  2008年   763篇
  2007年   884篇
  2006年   862篇
  2005年   812篇
  2004年   737篇
  2003年   599篇
  2002年   667篇
  2001年   510篇
  2000年   478篇
  1999年   360篇
  1998年   277篇
  1997年   274篇
  1996年   241篇
  1995年   197篇
  1994年   205篇
  1993年   183篇
  1992年   147篇
  1991年   127篇
  1990年   77篇
  1989年   86篇
  1988年   55篇
  1987年   54篇
  1986年   52篇
  1985年   53篇
  1984年   41篇
  1983年   35篇
  1982年   35篇
  1981年   36篇
  1980年   47篇
  1979年   28篇
  1978年   26篇
  1977年   14篇
  1976年   15篇
  1974年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The social environment modulates gene expression, physiology, behaviour and patterns of inheritance. For more than 50 years, this concept has been investigated using approaches that include partitioning the social component out of behavioural heritability estimates, studying maternal effects on offspring, and analysing dominance hierarchies. Recent advances have formalized this ‘social environment effect’ by providing a more nuanced approach to the study of social influences on behaviour while recognizing evolutionary implications. Yet, in most of these formulations, the dynamics of social interactions are not accounted for. Also, the reciprocity between individual behaviour and group‐level interactions has been largely ignored. Consistent with evolutionary theory, the principles of social interaction are conserved across a broad range of taxa. While noting parallels in diverse organisms, this review uses Drosophila melanogaster as a case study to revisit what is known about social interaction paradigms. We highlight the benefits of integrating the history and pattern of interactions among individuals for dissecting molecular mechanisms that underlie social modulation of behaviour.  相似文献   
2.
3.
4.
5.
Phenotypic plasticity is the ability of a genotype to produce more than one phenotype in order to match the environment. Recent theory proposes that the major axis of genetic variation in a phenotypically plastic population can align with the direction of selection. Therefore, theory predicts that plasticity directly aids adaptation by increasing genetic variation in the direction favoured by selection and reflected in plasticity. We evaluated this theory in the freshwater crustacean Daphnia pulex, facing predation risk from two contrasting size-selective predators. We estimated plasticity in several life-history traits, the G matrix of these traits, the selection gradients on reproduction and survival, and the predicted responses to selection. Using these data, we tested whether the genetic lines of least resistance and the predicted response to selection aligned with plasticity. We found predator environment-specific G matrices, but shared genetic architecture across environments resulted in more constraint in the G matrix than in the plasticity of the traits, sometimes preventing alignment of the two. However, as the importance of survival selection increased, the difference between environments in their predicted response to selection increased and resulted in closer alignment between the plasticity and the predicted selection response. Therefore, plasticity may indeed aid adaptation to new environments.  相似文献   
6.
Populations often contain discrete classes or morphs (e.g., sexual dimorphisms, wing dimorphisms, trophic dimorphisms) characterized by distinct patterns of trait expression. In quantitative genetic analyses, the different morphs can be considered as different environments within which traits are expressed. Genetic variances and covariances can then be estimated independently for each morph or in a combined analysis. In the latter case, morphs can be considered as separate environments in a bivariate analysis or entered as fixed effects in a univariate analysis. Although a common approach, we demonstrate that the latter produces downwardly biased estimates of additive genetic variance and heritability unless the quantitative genetic architecture of the traits concerned is perfectly correlated between the morphs. This result is derived for four widely used quantitative genetic variance partitioning methods. Given that theory predicts the evolution of genotype‐by‐environment (morph) interactions as a consequence of selection favoring different trait combinations in each morph, we argue that perfect correlations between the genetic architectures of the different morphs are unlikely. A sampling of the recent literature indicates that the majority of researchers studying traits expressed in different morphs recognize this and do estimate morph‐specific quantitative genetic architecture. However, ca. 16% of the studies in our sample utilized only univariate, fixed‐effects models. We caution against this approach and recommend that it be used only if supported by evidence that the genetic architectures of the different morphs do not differ.  相似文献   
7.
8.
Understanding the role of genetics in disease has become a central part of medical research. Non-synonymous single nucleotide variants (nsSNVs) in coding regions of human genes frequently lead to pathological phenotypes. Beyond single variations, the individual combination of nsSNVs may add to pathogenic processes. We developed a multiscale pipeline to systematically analyze the existence of quantitative effects of multiple nsSNVs and gene combinations in single individuals on pathogenicity. Based on this pipeline, we detected in a data set of 842 nsSNVs discovered in 76 genes related to cardiomyopathies, associated nsSNV combinations in seven genes present in at least 70% of all 639 patient samples, but not in a control cohort of healthy humans. Structural analyses of these revealed primarily an influence on the protein stability. For amino acid substitutions located at the protein surface, we generally observed a proximity to putative binding pockets. To computationally analyze cumulative effects and their impact, pathogenicity methods are currently being developed. Our approach supports this process, as shown on the example of a cardiac phenotype but can be likewise applied to other diseases such as cancer.  相似文献   
9.
Genetic and Genomic Resources of Small Millets   总被引:1,自引:0,他引:1  
Small millets are very promising agricultural entity to ensure global food security. They gained remarkable importance in agriculture due to their resilience to climatic changes and increasing demand for nutritious food and feed. The genetic variability in the core and mini-core germplasm of small millets was characterized for nutritional composition and capacity to tolerate abiotic stresses that can be infused in breeding programs. Other than the foxtail millet, availability of genomic information in small millets is far below the mark for use in marker-assisted breeding and other genetic improvement programs. The genome sequence of foxtail millet has recently triggered a plethora of post-genomic analysis and envisaged foxtail millet as a model organism for the C4 grasses and bioenergy research. Recent developments in the next-generation sequencing technologies enabled us, with the simultaneous discovery of high-throughput markers and multiplexed genotyping of germplasm, to speedup marker-assisted breeding. In this context, an in-depth analysis of the wealth of diverse germplasm resources and future perspectives of integrating genomics in genome-wide marker-trait association and breeding in small millets is worthy.  相似文献   
10.
The peculiar biology of mitochondrial DNA (mtDNA) potentially has detrimental consequences for organismal health and lifespan. Typically, eukaryotic cells contain multiple mitochondria, each with multiple mtDNA genomes. The high copy number of mtDNA implies that selection on mtDNA functionality is relaxed. Furthermore, because mtDNA replication is not strictly regulated, within-cell selection may favour mtDNA variants with a replication advantage, but a deleterious effect on cell fitness. The opportunities for selfish mtDNA mutations to spread are restricted by various organism-level adaptations, such as uniparental transmission, germline mtDNA bottlenecks, germline selection and, during somatic growth, regular alternation between fusion and fission of mitochondria. These mechanisms are all hypothesized to maintain functional mtDNA. However, the strength of selection for maintenance of functional mtDNA progressively declines with age, resulting in age-related diseases. Furthermore, organismal adaptations that most probably evolved to restrict the opportunities for selfish mtDNA create secondary problems. Owing to predominantly maternal mtDNA transmission, recombination among mtDNA from different individuals is highly restricted or absent, reducing the scope for repair. Moreover, maternal inheritance precludes selection against mtDNA variants with male-specific effects. We finish by discussing the consequences of life-history differences among taxa with respect to mtDNA evolution and make a case for the use of microorganisms to experimentally manipulate levels of selection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号