首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   954篇
  免费   181篇
  国内免费   366篇
  2023年   26篇
  2022年   32篇
  2021年   49篇
  2020年   60篇
  2019年   72篇
  2018年   56篇
  2017年   70篇
  2016年   64篇
  2015年   79篇
  2014年   81篇
  2013年   90篇
  2012年   53篇
  2011年   78篇
  2010年   48篇
  2009年   60篇
  2008年   56篇
  2007年   65篇
  2006年   37篇
  2005年   58篇
  2004年   37篇
  2003年   38篇
  2002年   30篇
  2001年   34篇
  2000年   33篇
  1999年   23篇
  1998年   18篇
  1997年   21篇
  1996年   15篇
  1995年   20篇
  1994年   10篇
  1993年   10篇
  1992年   13篇
  1991年   6篇
  1990年   7篇
  1989年   9篇
  1988年   7篇
  1987年   3篇
  1986年   7篇
  1985年   7篇
  1984年   6篇
  1983年   1篇
  1982年   4篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
排序方式: 共有1501条查询结果,搜索用时 125 毫秒
1.
The European Common Agricultural Policy still follows its primary goals, i.e. quality food at affordable prices and a decent standard of living for farmers, fifty years after its adoption. Moreover, this policy adapts to the changing needs of society and the new challenges, mostly preservation of the environment, nature and biodiversity in rural areas. Although the Common Agricultural Policy receives the largest share of European budget, the funds are decreasing over time, especially direct payments, which aim to provide basic income support to farmers in the European Union. On the other hand, agri-environmental payments are gaining importance. Policy decision-makers should be interested in the question of impacts of growing eco-conditionality of agricultural spending. New insights would help them to be successful in achieving the goals of sustainable agriculture. The purpose of this paper is to estimate the impacts of production support payments and rural development payments on the quality of groundwater. We use the small EU country Slovenia as an example. The baseline indicators are the level of nitrates and pesticides in groundwater, while the impacts were estimated using spatial error model. The results show that direct payments, coupled subsidies and investment grants raise the level of pesticides in groundwater, but do not have any statistically significant impact on the level of nitrates in groundwater. Furthermore, we did not find any statistically significant effects of agri-environmental payments on decrease of groundwater pollution with nitrates. However, our findings revealed that agri-environmental payments are effective in reducing pesticides in groundwater, although only to a limited extent. These results imply a problem of insufficient targeting of agri-environmental measures on the one hand, and suggest that greening of direct payments is necessary and entirely justified.  相似文献   
2.
基于DSSAT模型对豫北地区夏玉米灌溉制度的优化模拟   总被引:3,自引:0,他引:3  
合理的灌溉制度是提高农业水资源利用效率、保证夏玉米高产稳产的前提。采用农业技术转化决策系统(DSSAT,Decision Support System for Agrotechno1ogy Transfer)探究了河南省北部地区夏玉米不同降水年型下的最优灌溉制度。经过参数的校正和验证,归一化均方根误差(nRMSE)、均方根误差(RMSE)和一致性指数(d)均表现出模拟值与实测值的吻合度很好,DSSAT-maize模型可以准确模拟夏玉米物候期、地上部分生物量、产量和土壤水分状况。然后基于模型模拟了不同灌溉处理下的夏玉米生产潜力,从而评估夏玉米缺水量,并对比分析不同生育时期灌水对产量的影响确定最优灌溉时期,综合考虑产量和水分利用效率确定最优灌溉制度。结果表明:夏玉米生长季的缺水量年际间差异显著,多年平均值为38.91 mm,波动范围为0—193.03 mm。在丰水年,不需要灌溉;在平水年,开花期灌水30 mm;在枯水年,开花期和灌浆期灌水50 mm;在特别干旱年,苗期、拔节期和开花期至少灌水180 mm。优化的灌溉制度下丰水年、平水年和枯水年的WUE达到最高且产量分别占其最高产量的100%、99.72%和97.89%,实现了作物高产节水协同提高的目标。  相似文献   
3.
研究氮沉降和降雨变化对土壤细菌群落结构的影响,对未来预测多个气候变化因子对草地生态系统影响的交互作用具有重要意义。以施氮和灌溉分别模拟氮沉降和降雨增加,采用高通量测序技术,研究8个氮添加水平(0、15、30、50、100、150、200、300kg N hm-2a-1)和2个水分添加水平(不灌溉、模拟夏季增雨100 mm灌溉)对土壤细菌群落结构的影响。结果表明,氮素和水分输入增加后,土壤细菌群落组成、丰度均显著变化(P0.05)。在群落中占主导的细菌门类有疣微菌门Verrucomicrobia(30.61%—48.51%)、变形菌门Proteobacteria(21.37%—29.97%)、酸杆菌门Acidobacteria(9.54%—20.67%)和拟杆菌门Bacteroidetes(4.96%—9.74%)。在常规降雨和水分添加两种条件下,随着氮添加水平的增加,占主导的细菌门类(相对丰度1%)表现出不同的变化趋势。疣微菌门相对丰度在常规降雨N100—N300条件下显著降低,但在氮素和水分同时添加条件下随氮添加水平升高而逐渐升高,在N200—N300时显著升高。变形菌门和拟杆菌门相对丰度在常规降雨高氮添加条件下呈升高趋势,但在水分添加时却无明显变化。酸杆菌门相对丰度在常规降雨高氮添加条件下升高,但在水分添加后呈明显下降趋势。放线菌门Actinobacteria相对丰度在常规降雨N100—N300条件下显著升高,但在水分添加后高氮添加时显著降低。厚壁菌门Firmicutes相对丰度在常规降雨条件下无显著变化,但在水分和高氮添加条件下降低。浮霉菌门Planctomycetes相对丰度在两种不同的水分添加条件下均呈先升高后降低的趋势。氮素和水分添加对土壤细菌群落结构的变化存在明显的互作效应(P0.0001)。在不同氮素和水分输入条件下共有19个土壤细菌门类相对丰度有显著差异。土壤细菌群落结构的变化主要来自于疣微菌门和酸杆菌门的相对丰度变化,两者可作为土壤细菌群落结构变化的指示种。综上,氮素和水分添加显著改变了土壤细菌群落结构,氮素和水分对土壤细菌不同门类相对丰度变化存在明显的互作效应。  相似文献   
4.
Agro-ecosystems constitute essential habitat for many organisms. Agricultural intensification, however, has caused a strong decline of farmland biodiversity. Organic farming (OF) is often presented as a more biodiversity-friendly practice, but the generality of the beneficial effects of OF is debated as the effects appear often species- and context-dependent, and current research has highlighted the need to quantify the relative effects of local- and landscape-scale management on farmland biodiversity. Yet very few studies have investigated the landscape-level effects of OF; that is to say, how the biodiversity of a field is affected by the presence or density of organically farmed fields in the surrounding landscape. We addressed this issue using the metacommunity framework, with weed species richness in winter wheat within an intensively farmed landscape in France as model system. Controlling for the effects of local and landscape structure, we showed that OF leads to higher local weed diversity and that the presence of OF in the landscape is associated with higher local weed biodiversity also for conventionally farmed fields, and may reach a similar biodiversity level to organic fields in field margins. Based on these results, we derive indications for improving the sustainable management of farming systems.  相似文献   
5.
居民对农业文化遗产的认知态度影响其行为选择,并对农业文化遗产的保护及可持续发展具有重要意义。基于人文地理学及环境心理学领域的地方认同理论,选择历史认同、现实认同、情感认同及行为认同4个维度变量,通过问卷调查,以福州居民对全球重要农业文化遗产"福州茉莉花与茶文化系统"的认知及保护态度作为研究对象,并通过构建福州居民农业文化遗产认知及保护规律定量分析居民认知态度、保护行为与人口特征之间的关系。结果表明:(1)福州居民对茉莉花与茶文化系统的行为认同维度得分高于其他维度,且福州市民各维度得分均高于外来居民;(2)受访居民对农业文化遗产的地方认同与其年龄、受教育水平、收入水平及在福州居住时间长短的关系较为密切;(3)通过构建福州居民农业文化遗产认知及保护规律发现,福州居民对农业文化遗产的保护行为主要受其对该遗产项目认知态度的影响,与居民人口特征相关性较弱。拓展农业文化遗产领域的研究视角及方法,促进农业文化遗产地动态保护与可持续发展具有参考价值。  相似文献   
6.
目录     
《生态学杂志》2019,38(10):0
  相似文献   
7.
The world's population is growing and demand for food, feed, fiber, and fuel is increasing, placing greater demand on land and its resources for crop production. We review previously published estimates of global scale cropland availability, discuss the underlying assumptions that lead to differences between estimates, and illustrate the consequences of applying different estimates in model‐based assessments of land‐use change. The review estimates a range from 1552 to 5131 Mha, which includes 1550 Mha that is already cropland. Hence, the lowest estimates indicate that there is almost no room for cropland expansion, while the highest estimates indicate that cropland could potentially expand to over three times its current area. Differences can largely be attributed to institutional assumptions, i.e. which land covers/uses (e.g. forests or grasslands) are societally or governmentally allowed to convert to cropland, while there was little variation in biophysical assumptions. Estimates based on comparable assumptions showed a variation of up to 84%, which originated mainly from different underlying data sources. On the basis of this synthesis of the assumptions underlying these estimates, we constructed a high, a medium, and a low estimate of cropland availability that are representative of the range of estimates in the reviewed studies. We apply these estimates in a land‐change model to illustrate the consequences on cropland expansion and intensification as well as deforestation. While uncertainty in cropland availability is hardly addressed in global land‐use change assessments, the results indicate a large range of estimates with important consequences for model‐based assessments.  相似文献   
8.
Biomass productivity is the main favorable trait of candidate bioenergy crops. Miscanthus × giganteus is a promising species, due to its high‐yield potential and positive traits including low nutrient requirements and potential for C sequestration in soils. However, miscanthus productivity appears to be mostly related to water availability in the soil. This is important, particularly in Mediterranean regions where the risk of summer droughts is high. To date, there have been no studies on miscanthus responses under different soil conditions, while only a few have investigated the role of different crop managements, such as irrigation and nitrogen fertilization, in the Mediterranean. Therefore, the effects of contrasting soil textures (i.e. silty‐clay‐loam vs. sandy‐loam) and alternative agricultural intensification regimes (i.e. rainfed vs. irrigated and 0, 50, 100 kg ha?1 nitrogen fertilization), on miscanthus productivity were evaluated at three different harvest times for two consecutive years. Our results confirmed the importance of water availability in determining satisfactory yields in Mediterranean environments, and how soil and site characteristics strongly affect biomass production. We found that the aboveground dry yields varied between 5 Mg ha?1 up to 29 Mg ha?1. Conversely, nitrogen fertilization played only a minor role on crop productivity, and high fertilization levels were relatively inefficient. Finally, a marked decrease, of up to ?40%, in the aboveground yield occurred when the harvest time was delayed from autumn to winter. Overall, our results highlighted the importance of determining crop responses on a site‐by‐site basis, and that decisions on the optimal harvest time should be driven by the biomass end use and other long‐term considerations, such as yield stability and the maintenance of soil fertility.  相似文献   
9.
A field experiment was conducted to investigate if carbon isotope (13C) discrimination () measured at the vegetative stage of spring wheat (Triticum turgidum L. var. durum) is related with the yield and water use efficiency (WUE) at ripening. A line source sprinkler irrigation system exposed the wheat genotypes to different watering regimes, from rainfed to full irrigation and thereby increased the range in yield and WUE attainable in the four genotypes studied. The results indicated that values measured at the late stem elongation stage 60 days after planting (DAP), showed strong positive correlation with total dry matter yield (r=0.732***), and a highly significant negative correlation with WUE (r=–0.755***) measured at ripening 105 DAP. The data suggest that the imprints of measured at vegetative growth stage persists throughout the entire growth period, until maturity. Subject to confirmation from additional studies in other crops and locations, early measurements of may prove a useful tool for rapid and early screening of cultivars, for high yield and high WUE.  相似文献   
10.
Changes in rainfall amounts and patterns have been observed and are expected to continue in the near future with potentially significant ecological and societal consequences. Modelling vegetation responses to changes in rainfall is thus crucial to project water and carbon cycles in the future. In this study, we present the results of a new model‐data intercomparison project, where we tested the ability of 10 terrestrial biosphere models to reproduce the observed sensitivity of ecosystem productivity to rainfall changes at 10 sites across the globe, in nine of which, rainfall exclusion and/or irrigation experiments had been performed. The key results are as follows: (a) Inter‐model variation is generally large and model agreement varies with timescales. In severely water‐limited sites, models only agree on the interannual variability of evapotranspiration and to a smaller extent on gross primary productivity. In more mesic sites, model agreement for both water and carbon fluxes is typically higher on fine (daily–monthly) timescales and reduces on longer (seasonal–annual) scales. (b) Models on average overestimate the relationship between ecosystem productivity and mean rainfall amounts across sites (in space) and have a low capacity in reproducing the temporal (interannual) sensitivity of vegetation productivity to annual rainfall at a given site, even though observation uncertainty is comparable to inter‐model variability. (c) Most models reproduced the sign of the observed patterns in productivity changes in rainfall manipulation experiments but had a low capacity in reproducing the observed magnitude of productivity changes. Models better reproduced the observed productivity responses due to rainfall exclusion than addition. (d) All models attribute ecosystem productivity changes to the intensity of vegetation stress and peak leaf area, whereas the impact of the change in growing season length is negligible. The relative contribution of the peak leaf area and vegetation stress intensity was highly variable among models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号