首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6234篇
  免费   863篇
  国内免费   666篇
  2024年   12篇
  2023年   161篇
  2022年   112篇
  2021年   218篇
  2020年   343篇
  2019年   375篇
  2018年   300篇
  2017年   337篇
  2016年   284篇
  2015年   289篇
  2014年   319篇
  2013年   384篇
  2012年   314篇
  2011年   283篇
  2010年   300篇
  2009年   319篇
  2008年   394篇
  2007年   426篇
  2006年   355篇
  2005年   301篇
  2004年   244篇
  2003年   218篇
  2002年   221篇
  2001年   205篇
  2000年   187篇
  1999年   155篇
  1998年   134篇
  1997年   96篇
  1996年   50篇
  1995年   63篇
  1994年   44篇
  1993年   57篇
  1992年   37篇
  1991年   24篇
  1990年   26篇
  1989年   20篇
  1988年   19篇
  1987年   23篇
  1986年   19篇
  1985年   21篇
  1984年   16篇
  1983年   5篇
  1982年   18篇
  1981年   9篇
  1980年   6篇
  1979年   7篇
  1978年   3篇
  1977年   5篇
  1976年   3篇
  1958年   1篇
排序方式: 共有7763条查询结果,搜索用时 156 毫秒
1.
In an ecosystem under simultaneous threat from multiple alien species, one invader may buffer the impact of another. Our surveys on a remote floodplain in the Kimberley region of north western Australia show that invasive chinee apple trees (Ziziphus mauritiana) provide critical refuge habitat for native rodents (pale field rats, Rattus tunneyi). Feral horses (Equus caballus) have trampled most of the remaining floodplain, but are excluded from the area around each chinee apple tree by thorny foliage. Although chinee apple trees constituted <10% of trees along our transects, they represented >50% of trees that harboured rat burrows. The mean number of burrows under each chinee apple tree was twice as high as under most other tree species, and we trapped more than seven times as many rats under chinee apple trees as under other types of trees. The extensive burrow systems under chinee apple trees contained female as well as male rats, whereas we only captured males around the smaller burrow systems under other tree species. Our data suggest that this invasive tree plays a critical role in the persistence of pale field rat populations in this degraded ecosystem, and that managers should maintain these trees (despite their alien origins) at least until feral horses have been removed.  相似文献   
2.
To preserve biodiversity, identifying at‐risk populations and developing conservation plans to mitigate the effects of human‐induced rapid environmental change (HIREC) are essential. Changes in diet, especially for food‐limited species, can aid in detecting populations being impacted by HIREC, and characterizing the quality, abundance, and temporal and spatial consistency of newly consumed food items may provide insight concerning the likelihood of a species persisting in a changing environment. We used Wood Storks (Mycteria americana) nesting in the Florida Everglades as a model system to study the possible effects of HIREC on a food‐limited population. We compared the diets of Wood Storks in 2013 and 2014 with those reported during the 1970s before major anthropogenic activities affected the Everglades system and prey availability. Wood Storks in our study consumed more large‐bodied sunfish species (Lepomis spp.), fewer native marsh fishes, and more non‐native fish species than during the 1970s. Large sunfish and non‐native fish are relatively rare in the drying pools of Everglades marshes where storks traditionally forage, suggesting that Wood Storks may be using novel foraging habitats such as created wetlands (i.e., canals and stormwater ponds). Although created wetlands have long hydroperiods conducive to maintaining large‐bodied fishes and could provide alternative foraging habitat when prey availability is reduced in natural marshes, additional studies are needed to determine the extent to which these wetlands are used by Wood Storks and, importantly, the quality of prey items potentially available to foraging Wood Storks in created wetlands.  相似文献   
3.
4.
Habitat fragmentation and invasive species often contribute to the decline of native taxa. Since the penetration of non‐native species into natural habitat may be facilitated by habitat fragmentation, it is important to examine how these two factors interact. Previous research documented that, in contrast to most other arthropod taxa, spiders increased in density and morphospecies richness with decreasing fragment area and increasing fragment age (time since insularization) in urban habitat fragments in San Diego County, California, USA. We tested whether a specific mechanism, an increase in non‐native species with fragmentation, is responsible for this pattern. We found that both native and non‐native taxa contributed to the pattern. Abundance of native spiders per pitfall trap sample increased significantly with decreasing fragment size (i.e. a negative density–area relationship) and abundance of non‐natives increased significantly with increasing fragment age. The proportion of non‐native individuals also increased significantly with age. One non‐native species, Oecobius navus, comprised the majority of non‐native individuals (82.2%) and a significant proportion of total individuals (25.1%). Richness of spider families per sample (family density) increased with fragment age due to an increase in the occurrence of non‐natives in older fragments, however, native family richness did not vary with age or area. Due to increasing dominance by non‐native and some native families, family evenness declined with decreasing fragment size and increasing fragment age. Native and non‐native abundance covaried positively arguing against strong negative interactions between the two groups. O. navus had a strong positive association with another common non‐native arthropod, the Argentine ant (Linepitheme humile), suggesting a possible direct interaction. In contrast, abundance of native spiders was negatively correlated with Argentine ant abundance. We hypothesize that fragmentation in this semiarid habitat increases productivity in smaller and older fragments enhancing the density of both native and non‐native taxa.  相似文献   
5.
There is a growing interest in understanding the influence of plant traits on their ability to spread in non-native regions. Many studies addressing this issue have been based on relatively small areas or restricted taxonomic groups. Here, we analyse a large data base involving 1567 plant species introduced between Eastern Asia and North America or from elsewhere to both regions. We related the extent of species distributions in each region to growth form and the distinction between upland and wetland habitats. We identified significant relationships between geographical distribution and plant traits in both native and exotic ranges as well as regional differences in the relationships. Range size was larger for herbaceous graminoids and forbs, especially annuals compared to perennials, than for woody species, and range size also was larger for plants of wetland compared to upland habitats. Distributions were more extensive in North America than in Eastern Asia, although native plants from both regions had broader distributions than non-natives, with exotics from elsewhere intermediate. Growth form and environment explained more of the variance in distribution of plants in North America than in Eastern Asia. The influence of growth form and habitat on distribution suggests that these traits might be related to tolerance of ecological conditions. In addition, the smaller extents of species in non-native compared to native areas suggest roles for dispersal limitation and adaptation to region-specific ecological conditions in determining distribution.  相似文献   
6.
Patterns generated from ecological surveys are rarely tested in similar habitats to assess the accuracy of predictions. Testing empirically derived predictions provides a strong tool for establishing the consistency of general patterns in ecology. We test the consistency of beetle community associations with habitat complexity in open canopy forests and make both community and morphospecies-level comparisons with results from a previous study. We use Normalized Difference Vegetation Indices (NDVIs) from remote sensing as a surrogate for habitat complexity. The positive relationships between NDVIs and site-based beetle species richness and abundance were consistent in open canopy forests both south and north of Sydney, Australia. NDVIs were also useful for predicting differences in beetle composition in open canopy forests. Taxon-specific responses to NDVI differences in 'southern forests' were very similar to responses in 'northern forests', most likely reflecting beetle trophic roles. This study shows that NDVIs can be used as rapid biodiversity indicators, when integrated with identified faunal responses to vegetation structure, provided that the lower vegetation strata may be measured by remote sensing.  相似文献   
7.
吉林蛟河针阔混交林树木生长的空间关联格局   总被引:3,自引:0,他引:3  
以吉林蛟河21.12hm2(660m×320m)针阔混交林样地为对象,利用2009年和2014年森林生长观测数据,研究树木生长的空间自相关格局及其生境影响机制。在样地生境型划分结果的基础上,采用Ripley's L(r)函数分析不同生境型中树木种群空间分布特征;利用标记相关函数分析不同生境型中树木生长特征的空间关联格局。研究结果表明:(1)红松(生境型3:1—5m)、蒙古栎(生境型3:1—3m)、胡桃楸(生境型2:1—2m;生境型3:1—7m)、黄檗(生境型2:1—3m;生境型4:1—5m)、水曲柳(生境型3:1—2m;生境型4:1—2m)、瘤枝卫矛(生境型2:1—15m)在特定生境和空间尺度上呈随机分布,但空间格局仍以聚集性分布为主;其余10个物种则在全部0—30m尺度上呈聚集分布。(2)标记相关函数分析显示春榆、毛榛、色木槭、瘤枝卫矛和千金榆的径向生长至少在一个生境中表现出正相关格局;暴马丁香、胡桃楸、裂叶榆、瘤枝卫矛、水曲柳、紫椴、糠椴、毛榛、色木槭和白牛槭的径向生长至少在一个生境中表现出负相关格局;红松、黄檗、蒙古栎和簇毛槭的径向生长在全部尺度上均未检测到显著的空间关联格局。因此,不同树种径向生长的空间自相关特征不同,树种生长特征的空间关联格局具有明显的生境依赖性。  相似文献   
8.
9.
中国梧桐属(Firmiana)在世界梧桐属中占比较大,且除梧桐外其余种均为中国特有且分布范围狭窄的植物种,灭绝风险大,研究气候变化对中国梧桐属树种的影响对于维护生物多样性具有重要的意义。结合多时期第六次国际气候耦合模式比较计划(CMIP6)气候变量数据和中国八种梧桐属树种的分布数据,基于R语言kuenm程序包优化的最大熵(Maxent)模型模拟分析中国八种梧桐属树种在多尺度下的潜在适生区,得出梧桐属最适宜的模拟尺度、潜在适生区的面积变化和迁移方向、梧桐属多样性保护关键区域及保护空缺。结果表明:(1)梧桐属最适宜的模拟尺度为亚洲;(2) Maxent模型的接收者操作特征曲线下面积(AUC)值均大于0.9,表明模型对梧桐属潜在适生区预测结果具有较高准确度;(3)气候变化影响下除云南梧桐(Firmiana major)外其它树种的潜在适生区都将在未来有所扩大;(4)中国八种梧桐属树种潜在适生区迁移方向主要为东西向,南北向大跨度迁移较少,纬度变化不大;(5)丹霞梧桐(Firmiana danxiaensis)的稳定潜在适生区最小;(6)中国梧桐属多样性保护关键区域主要分布于广西壮族自治区及云南、广东、海南等省区;(7)中国梧桐属多样性保护空缺区域主要分布于广西壮族自治区中部及海南省北部;(8)梧桐属多样性保护关键区域正在为人造地表所侵蚀。研究分析气候变化对中国八种梧桐属树种的影响及其潜在适生区变化、中国梧桐属多样性保护状态,可为中国梧桐属建立多样性保护廊道提供相关建议,为制定多样性保护规划及相应措施提供参考。  相似文献   
10.
Aerial images were obtained on 22 July 1999 and 4 August 2000 from five cotton sites infested with Meloidogyne incognita. Images contained three broad bands representing the green (500-600 nm), red (600-700 nm), and near-infrared (700-900 nm) spectrum. Soil samples were collected and assayed for nematodes in the fall at these sites. Sampling locations were identified from images, by locating the coordinates of a wide range of light intensity (measured as a digital number) for each single band, and combinations of bands. There was no single band or band combination in which reflectance consistently predicted M. incognita density. In all 10 site-year combinations, the minimum number of samples necessary to estimate M. incognita density within 25% of the population mean was greater when sampling by reflectance-based classes (3 to 4 per site) than sampling based on the entire site as one unit. Two sites were sampled at multiple times during the growing season. At these sites, there was no single time during the growing season optimal to take images for nematode sampling. Aerial infrared photography conducted during the growing season could not be used to accurately determine fall population densities of M. incognita.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号