首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1050篇
  免费   121篇
  国内免费   11篇
  2024年   3篇
  2023年   28篇
  2022年   33篇
  2021年   57篇
  2020年   65篇
  2019年   71篇
  2018年   67篇
  2017年   30篇
  2016年   29篇
  2015年   46篇
  2014年   72篇
  2013年   81篇
  2012年   50篇
  2011年   57篇
  2010年   43篇
  2009年   45篇
  2008年   49篇
  2007年   50篇
  2006年   35篇
  2005年   30篇
  2004年   38篇
  2003年   27篇
  2002年   25篇
  2001年   18篇
  2000年   10篇
  1999年   11篇
  1998年   12篇
  1997年   11篇
  1996年   6篇
  1995年   4篇
  1994年   4篇
  1993年   9篇
  1992年   9篇
  1991年   4篇
  1990年   5篇
  1989年   5篇
  1988年   2篇
  1987年   4篇
  1986年   5篇
  1985年   4篇
  1984年   5篇
  1982年   3篇
  1981年   4篇
  1980年   3篇
  1979年   5篇
  1977年   1篇
  1976年   2篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有1182条查询结果,搜索用时 15 毫秒
1.
Although constitutive activation of Janus kinase 3 (Jak3) leads to different cancers, the mechanism of trans-molecular regulation of Jak3 activation is not known. Previously we reported that Jak3 interactions with adapter protein p52ShcA (Shc) facilitate mucosal homeostasis. In this study, we characterize the structural determinants that regulate the interactions between Jak3 and Shc and demonstrate the trans-molecular mechanism of regulation of Jak3 activation by Shc. We show that Jak3 autophosphorylation was the rate-limiting step during Jak3 trans-phosphorylation of Shc where Jak3 directly phosphorylated two tyrosine residues in Src homology 2 (SH2) domain and one tyrosine residue each in calponin homology 1 (CH1) domain and phosphotyrosine interaction domain (PID) of Shc. Direct interactions between mutants of Jak3 and Shc showed that although FERM domain of Jak3 was sufficient for binding to Shc, CH1 and PID domains of Shc were responsible for binding to Jak3. Functionally Jak3 was autophosphorylated under IL-2 stimulation in epithelial cells. However, Shc recruited tyrosine phosphatases SHP2 and PTP1B to Jak3 and thereby dephosphorylated Jak3. Thus we not only characterize Jak3 interaction with Shc, but also demonstrate the molecular mechanism of intracellular regulation of Jak3 activation where Jak3 interactions with Shc acted as regulators of Jak3 dephosphorylation through direct interactions of Shc with both Jak3 and tyrosine phosphatases.  相似文献   
2.
Activation of osteoblasts in bone formation and osteoclasts in bone resorption is important during the bone fracture healing process. There has been a long interest in identifying and developing a natural therapy for bone fracture healing. In this study, we investigated the regulation of osteoclast differentiation by baicalin, which is a natural molecule extracted from Eucommiaulmoides (small tree native to China). It was determined that baicalin enhanced osteoclast maturation and bone resorption activity in a dose‐dependent manner. Moreover, this involves the activation of MAPK, increased Mitf nuclear translocation and up‐regulation of downstream osteoclast‐related target genes expression. The baicalin‐induced effect on osteoclast differentiation can be mimicked by specific inhibitors of p‐ERK (U0126) and the Mitf‐specific siRNA, respectively. Protein–ligand docking prediction identified that baicalin might bind to RANK, which is the upstream receptor of p‐ERK/Mitf signalling in osteoclasts. This indicated that RANK might be the binding target of baicalin. In sum, our findings revealed baicalin increased osteoclast maturation and function via p‐ERK/Mitf signalling. In addition, the results suggest that baicalin can potentially be used as a natural product for the treatment of bone fracture.  相似文献   
3.
Assessing modes of skeletal repair is essential for developing therapies to be used clinically to treat fractures. Mechanical stability plays a large role in healing of bone injuries. In the worst-case scenario mechanical instability can lead to delayed or non-union in humans. However, motion can also stimulate the healing process. In fractures that have motion cartilage forms to stabilize the fracture bone ends, and this cartilage is gradually replaced by bone through recapitulation of the developmental process of endochondral ossification. In contrast, if a bone fracture is rigidly stabilized bone forms directly via intramembranous ossification. Clinically, both endochondral and intramembranous ossification occur simultaneously. To effectively replicate this process investigators insert a pin into the medullary canal of the fractured bone as described by Bonnarens4. This experimental method provides excellent lateral stability while allowing rotational instability to persist. However, our understanding of the mechanisms that regulate these two distinct processes can also be enhanced by experimentally isolating each of these processes. We have developed a stabilization protocol that provides rotational and lateral stabilization. In this model, intramembranous ossification is the only mode of healing that is observed, and healing parameters can be compared among different strains of genetically modified mice 5-7, after application of bioactive molecules 8,9, after altering physiological parameters of healing 10, after modifying the amount or time of stabilization 11, after distraction osteogenesis 12, after creation of a non-union 13, or after creation of a critical sized defect. Here, we illustrate how to apply the modified Ilizarov fixators for studying tibial fracture healing and distraction osteogenesis in mice.  相似文献   
4.
Summary A complex, higly sulphated glucoxylomannogalactan has been extracted in a yield of about 1% dry weight fromC. simpliciuscula. This polysaccharide is similar in composition to sulphated polysaccharides previously isolated from otherCaulerpa species (Mackie andPercival, 1961). The most likely location of this compound in the unwounded cell is in the vacuole. This polysaccharide appears as the major component in wound plugs, forming a viscoelastic barrier between the protoplasm and the external environment. The properties of the sulphated polysaccharide were studied in an effort to understand the physiology and mechanism of wound plug formation.  相似文献   
5.
Previous studies have assumed that amelogenin is responsible for the therapeutic effect of the enamel matrix derivative (EMD) in periodontal tissue healing and regeneration. However, it is difficult to confirm this hypothesis because both the EMD and the amelogenins are complex mixtures of multiple proteins. Further adding to the difficulties is the fact that periodontal tissue regeneration involves various types of cells and a sequence of associated cellular events including the attachment, migration and proliferation of various cells. In this study, we investigated the potential effect of a 25-kDa recombinant porcine amelogenin (rPAm) on primarily cultured periodontal ligament fibroblasts (PDLF), gingival fibroblasts (GF) and gingival epithelial cells (GEC). The cells were treated with 25-kDa recombinant porcine amelogenin at a concentration of 10 μg/mL. We found that rPAm significantly promoted the proliferation and migration of PDLF, but not their adhesion. Similarly, the proliferation and adhesion of GF were significantly enhanced by treatment with rPAm, while migration was greatly inhibited. Interestingly, this recombinant protein inhibited the growth rate, cell adhesion and migration of GEC. These data suggest that rPAm may play an essential role in periodontal regeneration through the activation of periodontal fibroblasts and inhibition of the cellular behaviors of gingival epithelial cells.  相似文献   
6.
The organization of eukaryotic chromatin is not static but changes as a function of cell status during processes such as proliferation, differentiation, and migration. DNA quantification has not been used extensively to investigate chromatin dynamics in combination with cellular migration. In this context, an optimized DNA-specific, nonperturbant method has been developed for studying chromatin organization, using the fluorescent vital bisbenzimidazole probe Hoechst 33342: this property has been described by Hamori et al. (1980). Computer-assisted image analysis was used to follow migratory activity and chromatin organization of L929 fibroblasts during in vitro wound healing. Cell movements were analyzed using an optical flow technique, which consists in the calculation of the velocity field of cells and nuclear movements in the frame. This system allows the correlation of cell migration and position in the cell cycle. It makes it possible to study chromatin dynamics using a quantitative analysis of nuclear differentiation reorganization (nuclear texture) and to correlate this with migration characteristics. The present system would be of interest for studying cell-extracellular matrix interactions using differing substrates, and also the migratory response to chemotactic factors. Such a model is a prerequisite for gaining better understanding of drug action.  相似文献   
7.
8.
This article summarizes some of the data that have been accumulated on several growth factors. Biochemical and biological properties of the Epidermal, Fibroblast, Astrocytes and Tumor growth factors (EGF, FGF, AGF, TGF) and those of growth factors derived from Platelets (PDGF), Brain (BDGF, ECGF), Eye (EDGF) and Cartilage (CDGF) are reviewed, as well as the in vitro mechanism of action of EGF and PDGF. The in vivo effects of these growth factors, particularly the experiments achieved to understand the physiological or physiopathological significance are described. The potential interest of these molecules in pharmacology and their use as wound healing agents is discussed.  相似文献   
9.
Circumferential and radial components of the yolk cell surface movements were measured in the loach embryos at the late blastula stage within 40–50 min after puncture or indentation by an obliquely directed glass rod. The yolk cell surface was preliminarily marked by coal particles. It was shown that even closely located regions of the surface differed markedly in the rate and direction of their movements. In the vicinity of puncture, the yolk cell surface at first contracted in both circumferential and radial directions and then widened, but did not reach the initial values. In more remote areas, this surface continued to contract in the circumferential direction, but was extended in the radial direction. The degree of its contraction along different radii was unequal. The reaction to oblique indentation was anisotropic: the closest area of the yolk cell surface, located along the direction of indentation, contracted in both circumferential and radial directions and formed a fold “leaking” onto the rod, while the opposite area contracted in the circumferential direction, but extended in the radial direction. A conclusion was drawn that the yolk cell surface is a multivariant mechanosensitive system. Its active responses to mechanical influences obey the same patterns as multicellular embryonic tissues.  相似文献   
10.
目的:探讨血流变学和血清学指标在骨折延迟愈合患者中的变化及其临床意义。方法:随机选取2010年1月~2016年6月在我院进行手术治疗的骨折延迟愈合及骨折正常愈合患者各90例,分别为观察组与对照组,对比分析两组患者术后第1、8、12周时血清可溶性血管细胞黏附分子1(sVCAM-1)、胰岛素样生长因子1(IGF-1)、血小板衍生生长因子(PDGF)及人可溶性细胞间黏附分子1(sICAM-1)和红细胞刚性指数、红细胞聚集指数、血浆黏度的差异。结果:术后第1、8、12周两组血清学及血流变学各指标整体相比差异均具有统计学意义(均P0.05),且组内两两比较均具有统计学差异(均P0.05)。术后8、12周观察组血清s ICAM-1、sVCAM-1、红细胞刚性指数、红细胞聚集指数、血浆黏度均高于对照组,而血清PDGF、IGF-1均低于对照组,比较差异均具有统计学意义(均P0.05)。结论:骨折患者血清sICAM-1、PDGF、IGF-1、sVCAM-1及红细胞刚性指数、红细胞聚集指数、血浆黏度水平会随着病程进展发生变化,并且血清sICAM-1、sVCAM-1及红细胞刚性指数、红细胞聚集指数、血浆黏度水平的升高,血清PDGF、IGF-1水平的降低可能是引起骨折延迟愈合的重要因素,对于骨折患者的临床治疗具有重要临床意义。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号