首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1634篇
  免费   105篇
  国内免费   74篇
  2023年   26篇
  2022年   23篇
  2021年   28篇
  2020年   46篇
  2019年   45篇
  2018年   42篇
  2017年   50篇
  2016年   47篇
  2015年   44篇
  2014年   82篇
  2013年   120篇
  2012年   70篇
  2011年   108篇
  2010年   55篇
  2009年   106篇
  2008年   79篇
  2007年   77篇
  2006年   73篇
  2005年   72篇
  2004年   67篇
  2003年   48篇
  2002年   62篇
  2001年   36篇
  2000年   34篇
  1999年   24篇
  1998年   19篇
  1997年   26篇
  1996年   17篇
  1995年   25篇
  1994年   23篇
  1993年   27篇
  1992年   30篇
  1991年   15篇
  1990年   11篇
  1989年   14篇
  1988年   11篇
  1987年   7篇
  1986年   6篇
  1985年   11篇
  1984年   20篇
  1983年   10篇
  1982年   10篇
  1981年   15篇
  1980年   8篇
  1979年   9篇
  1978年   9篇
  1977年   7篇
  1976年   3篇
  1975年   7篇
  1974年   4篇
排序方式: 共有1813条查询结果,搜索用时 263 毫秒
1.
Dinoflagellates within the genus Symbiodinium are photosymbionts of many tropical reef invertebrates, including corals, making them central to the health of coral reefs. Symbiodinium have therefore gained significant research attention, though studies have been constrained by technical limitations. In particular, the generation of viable cells with their cell walls removed (termed protoplasts) has enabled a wide range of experimental techniques for bacteria, fungi, plants, and algae such as ultrastructure studies, virus infection studies, patch clamping, genetic transformation, and protoplast fusion. However, previous studies have struggled to remove the cell walls from armored dinoflagellates, potentially due to the internal placement of their cell walls. Here, we produce the first Symbiodinium protoplasts from three genetically and physiologically distinct strains via incubation with cellulase and osmotic agents. Digestion of the cell walls was verified by a lack of Calcofluor White fluorescence signal and by cell swelling in hypotonic culture medium. Fused protoplasts were also observed, motivating future investigation into intra‐ and inter‐specific somatic hybridization of Symbiodinium. Following digestion and transfer to regeneration medium, protoplasts remained photosynthetically active, regrew cell walls, regained motility, and entered exponential growth. Generation of Symbiodinium protoplasts opens exciting, new avenues for researching these crucial symbiotic dinoflagellates, including genetic modification.  相似文献   
2.
Materials with new and improved functionalities can be obtained by modifying cellulose with gold nanoparticles (AuNPs) via the in situ reduction of a gold precursor or the deposition or covalent immobilization of pre‐synthesized AuNPs. Here, we present an alternative biomolecular recognition approach to functionalize cellulose with biotin‐AuNPs that relies on a complex of 2 recognition elements: a ZZ‐CBM3 fusion that combines a carbohydrate‐binding module (CBM) with the ZZ fragment of the staphylococcal protein A and an anti‐biotin antibody. Paper and cellulose microparticles with AuNPs immobilized via the ZZ‐CBM3:anti‐biotin IgG supramolecular complex displayed an intense red color, whereas essentially no color was detected when AuNPs were deposited over the unmodified materials. Scanning electron microscopy analysis revealed a homogeneous distribution of AuNPs when immobilized via ZZ‐CBM3:anti‐biotin IgG complexes and aggregation of AuNPs when deposited over paper, suggesting that color differences are due to interparticle plasmon coupling effects. The approach could be used to functionalize paper substrates and cellulose nanocrystals with AuNPs. More important, however, is the fact that the occurrence of a biomolecular recognition event between the CBM‐immobilized antibody and its specific, AuNP‐conjugated antigen is signaled by red color. This opens up the way for the development of simple and straightforward paper/cellulose‐based tests where detection of a target analyte can be made by direct use of color signaling.  相似文献   
3.
4.
The ability of Climacodon septentrionalis to immobilize and kill a mycophagous nematode (Aphelenchoides sp.) in vitro is described for the first time. Two isolates produced droplets (20–45 μm in diameter) that formed at the apices of tall, stalked, and branching secretory cells (700–1,500 μm tall). On 2% modified malt extract agar, nematodes became enveloped in the droplets, which restricted their ability to move and resulted in complete immobilization and death within several hours of contact. The rate of decomposition of the nematodes varied considerably, with most individuals persisting for weeks whereas others were degraded within several days and appeared to be colonized by dense hyphal growth. This study provides the first documentation of a non-agaricoid fungus producing secretory cells that are able to immobilize nematodes.  相似文献   
5.
To estimate whole-tree water use when employing sap flow measurements, integration of the sap flux density (F d) over the sapwood area is needed. Accordingly, it is necessary to obtain information on the characteristics of stem water transportation such as spatial variations in F d and the active xylem area in the stem cross-section. Although evergreen oak trees with radial-porous wood represent a major component of secondary forests in western Japan, detailed information on their stem water transportation characteristics remains unclear. In the present study, we used the heat dissipation method (Granier method) to conduct measurements of azimuthal and radial variations in the F d of Quercus glauca Thunb. ex Murray, a representative evergreen broad-leaved tree in western Japan. Further, by analyzing the anatomy of the xylem structure, we examined why F d varies spatially in the stem cross-section. By using a dye solution injected into a radial hole bored into the tree trunk, we confirmed that the entire stem is hydroactive. We also compared the spatial variations in F d and water conductivity per xylem area (K s) which were estimated by using the observed vessel diameters and their density over the stem cross-section and Hagen–Poiseuille’s law. Azimuthal and radial variations in F d reached about 60 and 50% of the maximum values, respectively, and could be explained by spatial variation in K s. As a result, we obtained statistical parameters describing the spatial variation in F d in Q. glauca and determined that whole-tree water use estimated from measurements in one direction had at most ±20% potential errors for studied trees.  相似文献   
6.
Metabolites of corticosteroids that contain the 21-oic acid moiety are found in human urine. The acids from neutral steroids and urinary pigments have been separated by passing the mixture through a column of polyethyleneimine cellulose. The acids adhering to the column are quantitatively eluted with dilute formic acid. The purified preparation is suitable for derivatization and chromatographic analysis.  相似文献   
7.
A collection of subfossil wood of Pinus sylvestris (Scots pine) was exposed to X-ray densitometry. The collection of 64 samples from the southern boreal forest zone was dendrochronologically cross-dated to a.d. 673-1788. Growth characteristics were determined by performing density profiles including the following parameters: minimum density, earlywood and latewood boundary density, maximum density, earlywood width, earlywood density, latewood width, latewood density, annual ring width and annual ring density. Seven out of the nine parameters were found to contain non-climatic growth trends and six were found to be heteroscedastic in their variance. Tree-specific records were indexed, to remove the non-climatic growth trends and stabilize the variance, and combined into nine parameter-specific tree-ring chronologies. Growth characteristics of the pines changed in parallel with the generally agreed climatic cooling from the Medieval Warm Period to the Little Ice Age: pine tree-rings showed decreasing maximum densities from the period a.d. 975-1150 to a.d. 1450–1625. A concomitant change in the intra-annual growth characteristics was detected between these periods. The findings indicate that not only the trees growing near the species’ distributional limits are sensitive to large-scale climatic variations but also the trees growing in habitats remote from the timberline have noticeably responded to past climate changes.  相似文献   
8.
9.
The simultaneous action of shear deformation and high pressure (SDHP) creates changes in the structure of wood and its main components (cellulose, hemicelluloses, lignin). The formation of water and alkali soluble polysaccharides under SDHP action, proceeds in seconds in the solid state, without the use of any reagents and solvents. Therefore, SDHP seems to be a technologically safe method and friendly to the environment. The amorphization of cellulose crystallites and depolymerization of cellulose chains were observed under a wide range of pressures (1–6 GPa), both for cellulose samples and the cellulose part of wood. Similar depolymerization occurs in the hemicellulose part of wood. The decomposition of polysaccharides under SDHP causes the formation of the water soluble part, whose content increases with pressure and the applied shear deformation. A maximum solubility of 40% and 55% was registered at 6 GPa following treatment of cellulose and birch wood samples. A higher output in the case of wood can be explained by a specific role of lignin under SDHP, which acts as a ‘grinding stone’ during cellulose and hemicelluloses destruction. As shown by high-performance size exclusion chromatography, the water soluble fraction obtained from cellulose contained glucose (2.6%), cellobiose (9.6%), cellotriose (16.6%) and other higher water soluble oligomers (71%). Almost complete dissolution (98%) of the treated cellulose sample can be achieved by extraction with 10% NaOH solution. The SDHP treated birch wood was subjected to submerged fermentation (with Trichoderma viride), and a 13% output of proteins was obtained. In this case, the water soluble part played the role of the so called ‘start sugars’. Abbreviations: ASF, alkali soluble fraction; DP, degree of polymerization; EC, energy consumption; HP, high pressure; LMWS, low molecular weight sugars; MC, moisture content; MCC, microcrystalline cellulose; SD, shear deformation, SDHP, shear deformation under high pressure; SS, shear strength; WSF, water soluble fraction This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   
10.
Analysis of the oxygen isotope ratio of tree-ring cellulose is a valuable tool that can be used as a paleoclimate proxy. Our ability to use this tool has gone through different phases. The first began in the 1970s with the demonstration of empirical relationships between the oxygen isotope ratio of tree-ring cellulose and climate. These empirical relationships, however, did not provide us with the confidence that they are robust through time, across taxa and across geographical locations. The second phase began with a rudimentary understanding of the physiological and biochemical mechanisms responsible for the oxygen isotope ratios of cellulose, which is necessary to increase the power of this tool. This phase culminated in a mechanistic tree-ring model integrating concepts of physiology and biochemistry in a whole-plant system. This model made several assumptions about leaf water isotopic enrichment and biochemistry which, in the nascent third phase, are now being challenged, with surprising results. These third-phase results suggest that, contrary to the model assumption, leaf temperature across a large latitudinal gradient is remarkably constant and does not follow ambient temperature. Recent findings also indicate that the biochemistry responsible for the incorporation of the cellulose oxygen isotopic signature is not as simple as has been assumed. Interestingly, the results of these challenges have strengthened the tree-ring model. There are several other assumptions that can be investigated which will improve the utility of the tree-ring model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号